
EXAM 3, MATH 24, FALL 2008

Instructions: Do not begin the exam until you are instructed to do so. You may write on the exam
sheet, but ONLY what is written in your bluebook will be graded.
For each problem, you must show all work in order to receive credit. Partial credit will be given when

appropriate, even if the �nal answer is not correct, but an answer with no work shown will receive zero credit
regardless of correctness. You may not use any text, notes, or calculators on this exam, and collaboration
is not allowed.

1. For the linear system

4x� 2y = 0

6x+ 3y = 0

2x� y = 0

a. (5 points). Write the system in matrix form.24 4 �2
6 3
2 �1

35� x
y

�
=

24 0
0
0

35

b. (10 points). Find a basis for the solution space.24 4 �2 j 0
6 3 j 0
2 �1 j 0

35 =)
24 1 0 j 0
0 1 j 0
0 0 j 0

35 =) x = y = 0

and thus a basis for the solution space is ��
0
0

��
i.e. the trivial solution is the unique solution to the system (system is over-determined).

2. A 1-kg mass is attached to a spring with restoring constant 4 N/m and placed on a horizontal surface.
The spring is compressed 1 m, then (at t = 0) given a "push" (which compresses it further) such that it is
given an initial velocity of 2 m/s. Neglect all forms of resistance for parts (a)�(c).

a. (5 points). Write down the initial value problem that models the position of the mass.

Using the general model mx00+ bx0+ kx = f(t), and the information given in the problem (m = 1, b = 0
(no resistance), k = 4), we have

x00 + 4x = 0

x(0) = 1

x0(0) = 2

If you consider compression of the spring to be negative, that�s �ne, but both IC�s must have the same sign.
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b. (5 points). What is the circular frequency of the mass-spring system, including proper units?

! =

r
k

m
= 2

rad

s

c. (10 points). Find the position of the mass as a function of time for t > 0, i.e. solve the IVP from
part (a).

Characteristic equation is r2+4 = 0 leading to roots of �2i, so � = 0 and � = 2. Using the solution for
complex roots

x(t) = e�t(c1 cos�t+ c2 sin�t)

we have
x(t) = c1 cos 2t+ c2 sin 2t

Plugging in t = 0 shows that x(0) = c1 = 1. Di¤erentiating and plugging in zero (DON�T FORGET THE
CHAIN RULE) shows that x0(0) = 2c2 = 2, so c2 = 1: Thus, the unique solution to the IVP is

x(t) = cos 2t+ sin 2t

The additive inverse (i.e. negative) of this solution is also acceptable if your initial conditions were negative.

d. (10 points). If resistance is introduced to the system such that the damping constant is 5 kg/s,
what would be the general solution for the position as a function of time? You do not need to consider the
initial conditions.

The new DE is
x00 + 5x0 + 4x = 0

which has characteristic equation
r2 + 5r + 4 = 0

which has roots -4 and -1. Thus,

x(t) = c1e
�4t + c2e

�t

e. (5 points). What is the long-term behavior of the system (i.e. as t!1) in part (d)?

Both terms in the general solution are decaying exponentials which tend to zero as t!1. The spring
returns to its equilibrium position in the long term.

3. (10 points). Find the general solution of the system x0 = Ax, where A =
�
1 4
0 2

�
.

Eigenvalues are found by

���� 1� � 4
0 2� �

���� = �2 � 3�+2 = 0, which has roots 1 and 2. The eigenvalues
can also be found by inspection (entries on the main diagonal), since the matrix is upper-triangular.
For � = 1, we have �

0 4 j 0
0 1 j 0

�
=)

�
0 0 j 0
0 1 j 0

�
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so the second component of the eigenvector is zero, and the �rst component is arbitrary. Setting the

arbitrary component to 1 (by choice, since any non-zero constant is �ne), eigenvector v1 =
�
1
0

�
.

For � = 2, we have �
�1 4 j 0
0 0 j 0

�
=)

�
1 �4 j 0
0 0 j 0

�
so the second component is arbitrary, and the �rst component is four times that arbitrary constant. Setting

the arbitrary component to 1, eigenvector v2 =
�
4
1

�
. Using the formula

x(t) = c1e
�1tv1 + c2e

�2tv2

we have

x(t) = c1e
t

�
1
0

�
+ c2e

2t

�
4
1

�

4. (20 points). Find the general solution to the following DE.

y00 + 4y0 + 4y = 9et

The homogeneous equation has characteristic equation r2+4r+4 = 0, which has repeated root -2. Thus,

yh = c1e
�2t + c2te

�2t

The simplest way to solve this problem is by the method of undetermined coe¢ cients, but variation of
parameters works as well.
Using undetermined coe¢ cients:
Since the forcing term (9et) does not solve the homogeneous equation, we try the particular solution

yp = Ae
t. The �rst and second derivatives are also Aet, so we have

(A+ 4A+ 4A)et = 9et

and thus 9A = 9, and A = 1. Therefore, the particular solution is yp = et and the general solution (the
sum of the homogeneous and particular solutions) is

y(t) = c1e
�2t + c2te

�2t + et

5. Explain the validity of the following statements with a short answer, example/counterexample, etc.

a. (5 points). Every simple (i.e. distinct, non-repeated) eigenvalue of a non-singular matrix
corresponds to a unique eigenvector.

This is false. For a linear system Ax = b, there are NO unique eigenvectors for b 6= 0. Recall that
eigenvectors are chosen such that the determinant of A��I is zero, so that there MUST be free parameters
in the system

(A� �I)x = 0

and thus any eigenvector multiplied by a non-zero constant will also be an eigenvector, meaning that eigen-
vectors are not unique. Recall in problem 3 that we CHOSE the arbitrary constants to be 1, but any other
non-zero choice would have led us to a valid eigenvector as well.
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b. (5 points). If a matrix transforms a vector such that the resulting vector remains in the same
vector space as the original, then the original vector is an eigenvector of the transformation matrix.

This is false. If a matrix transforms a vector such that the resulting vector is PARALLEL (or anti-
parallel) to the original, then the vector is an eigenvector of the transformation matrix. Being in the same
vector space is not su¢ cient.

c. (5 points). An n�n linear system Ax = 0 is always consistent, and therefore a solution always
exists. If the solution is unique, it is only the trivial solution x = 0.

This is completely true. If the determinant of A is zero (i.e. A is singular), then Gauss-Jordan reduction
will result in at least one all-zero row. The only way for a system to be inconsistent is for there to be an
all-zero row in the reduced row-echelon form of the matrix, with a non-zero element on the right side (the
augmented part of the matrix). Since in the system Ax = 0, the matrix is augmented with the zero vector,
it is not possible to have a non-zero entry on the right side. Thus, the system is always consistent, and a
solution always exists.
Another valid reason is that since x = 0 is a solution, a solution obviously exists, so the system must be

consistent.
If A is non-singular, it must be row-equivalent to the identity, and there will be no free parameters.

Thus, each element of the solution must be identically zero, and the solution must be unique (also implied
by non-singularity). Thus, the trivial solution is unique if A is non-singular.

d. (5 points). If a 2nd-order linear system of (�rst-order) DE�s has a repeated eigenvalue, then
the eigenvectors cannot possibly span the eigenspace, and you must use a generalized eigenvector (i.e. u
such that (A��I)u = v, where � is an eigenvalue, and v is its eigenvector) to obtain 2 linearly independent
eigenvectors.

This is false. If you obtain two free parameters in the system (A � �I)x = 0, you can get two linearly

independent eigenvectors from the repeated eigenvalue. Consider the identity matrix
�
1 0
0 1

�
. The

repeated eigenvalue is 1, and thus the system becomes�
0 0 j 0
0 0 j 0

�

and both components are arbitrary, leading to r
�
1
0

�
+ s

�
0
1

�
; and thus a basis for the eigenspace of the

repeated eigenvalue is
��

1
0

�
;

�
0
1

��
, which has dimension 2. Note that we were not required to use the

generalized eigenvector u. The generalized eigenvector would have been required only if there had been one
free parameter instead of two.
FYI: It was no coincidence that the eigenvectors were the column vectors of the original matrix. For

any diagonal matrix, the eigenvalues are the entries on the main diagonal, and their corresponding column
vectors are their eigenvectors. This is just part of the beauty of diagonal matrices!
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