Math 24 Spring 2009 - Exam 1 Solutions

Prepared by Vikram Rao
Lecturer: Boaz Ilan

1. (30 points) Consider the equation $\frac{d y}{d t}=t y+t y^{2}$.
(a) Define what an equilibrium solution is in general.
(b) Find the equilibrium solutions of the equation above.
(c) Sketch the direction field and determine the stability of the equilibrium solutions.
(d) Find the general solution. What is its long-time behavior?
(e) Perform the transformation $v(t)=\frac{1}{y(t)}$, obtain a differential equation for $v(t)$, and classify this equation.

SOLUTION:

(a) An equilibrium solution is a constant solution, that is $y(t)=c$, where c is a constant. Therefore, $\frac{d y}{d t}=y^{\prime}=0$. Its graph the (t, y) plane is a horizontal line.
(b) Equilibrium solutions can be found by setting $f(t, y)=0$. Here

$$
\frac{d y}{d t}=t y+t y^{2}=0 \Rightarrow t y(y+1)=0
$$

$\therefore y=0$ and $y=-1$ are equilibrium solutions. Note that $t=0$ is not an equilibrium solution or a solution at all.
(c) The direction field has been plotted below.

Based on the results below, $y=0$ is an unstable equilibrium solution and $y=-1$ is a stable equilibrium solution.
(d) Using separation of variables

$$
\frac{d y}{d t}=t y(y+1) \Rightarrow \frac{d y}{y(y+1)}=t d t \Rightarrow \int \frac{d y}{y(y+1)}=\int t d t \Rightarrow \int \frac{d y}{y(y+1)}=\frac{t^{2}}{2}+C
$$

For $\int \frac{d y}{y(y+1)}$, we can use partial fraction decomposition, $\int \frac{d y}{y(y+1)}=\frac{A}{y}+\frac{B}{y+1}$
$\Rightarrow 1=A(y+1)+B(y) \Rightarrow \therefore A=1, B=-1, \Rightarrow \int \frac{d y}{y(y+1)}=\ln \left|\frac{y}{y+1}\right|$
$\Rightarrow \ln \left|\frac{y}{y+1}\right|=\frac{t^{2}}{2}+C \Rightarrow y=\frac{K e^{\frac{t^{2}}{2}}}{1-K e^{\frac{t^{2}}{2}}} ;\left(K=e^{C}\right)$
For the long-time behavior $(t \rightarrow \infty)$, using L'Hospital's Rule once, y would go to -1 . This should not be surprising because $y=-1$ is the stable equilibrium solution.
(e) $v=\frac{1}{y} \Rightarrow y=\frac{1}{v} \Rightarrow y^{\prime}=-\frac{1}{v^{2}} v^{\prime} \Rightarrow-\frac{1}{v^{2}} v^{\prime}=\frac{t}{v}+\frac{t}{v^{2}} \Rightarrow v^{\prime}=-v t-t$

This equation is $1^{\text {st }}$ order, linear, nonhomogenous, variable coefficients, separable, and nonautonomous.
2. (30 points) Consider the equation $\frac{d y}{d t}+\frac{y}{\sqrt{t}}=e^{-\sqrt{t}}$
(a) Classify this equation as best as you can.
(b) Explain what Picard's theorem says about the existence and uniqueness of a solution with the initial value $y(0)=1$.
(c) Find the general solution.
(d) Find the solution with initial value $y(0)=1$. Is your answer consistent with part (b)?

SOLUTION:

(a) $1^{\text {st }}$ order, linear, nonhomogeneous, variable coefficients, nonseparable, nonautonomous
(b) Picard's theorem is inconclusive about existence and uniqueness because $f(t, y)=e^{-\sqrt{t}}-\frac{y}{\sqrt{t}}$ is undefined at $(t, y)=(0,1)$.
(c) We need to use the Integrating Factor method so first find $\mu(t)=e^{\int t^{-1 / 2}}=e^{2 \sqrt{t}}$. Next, we will multiply both sides by $\mu(t)$. The left hand side is a perfect derivative and we get that

$$
\left(e^{2 \sqrt{t}} y\right)^{\prime}=e^{\sqrt{t}} \Rightarrow \int\left(e^{2 \sqrt{t}} y\right)^{\prime}=\int e^{\sqrt{t}} d t
$$

To integrate $\int e^{\sqrt{t}} d t$ we use integration by parts, but first make a substitution of $u=\sqrt{t}$. Therefore, the integral of the right-hand side of the equation above is
$u^{2}=t \Rightarrow 2 u d u=d t \Rightarrow 2 \int u e^{u} d u=2 u e^{u}-2 e^{u} \Rightarrow 2 \sqrt{t} e^{\sqrt{t}}-2 e^{\sqrt{t}}$
Using this integral and the equation we obtain the general solution as $\left(e^{2 \sqrt{t}} y\right)=2 \sqrt{t} e^{\sqrt{t}}-2 e^{\sqrt{t}}+C \Rightarrow y=\frac{2 \sqrt{t}}{e^{\sqrt{t}}}-\frac{2}{e^{\sqrt{t}}}+\frac{C}{e^{2 \sqrt{t}}}$
(d) Plugging in $t=0$ and $y=1$, we get that $C=3$. Therefore, $y=\frac{2 \sqrt{t}}{e^{\sqrt{t}}}-\frac{2}{e^{\sqrt{t}}}+\frac{3}{e^{2 \sqrt{t}}}$. This is consistent with part (b) because Picard's theorem was inconclusive. In other words, any answer would have been consistent with Picard's theorem.
3. (20 points) Answer the following TRUE/FALSE questions. Explain your answers concisely and be sure to write the word TRUE or FALSE.
(a) $y(x)=x \sin x$ is a solution of the IVP $\frac{d y}{d x}-\frac{y}{x}=-x \cos x, y(0)=0$.
(b) $y=t$ is an equilibrium solution of $\frac{d y}{d t}=t[\tan (y)-\tan (t)]$
(c) Picard's theorem guarantees existence and uniqueness of a solution to the IVP $\frac{d y}{d x}=\sin ^{-1} y, \quad y(0)=0$.
(d) If $y_{1}(t)$ and $y_{2}(t)$ are two solutions of the equation $\sin (t) \frac{d y}{d t}-t y=0$ then

$$
y_{1}+y_{2} \text { is also a solution of this equation. }
$$

SOLUTION:

(a) With $y(x)=x \sin x$ and $\frac{d y}{d x}=\sin x+x \cos x$, plugging in we get that $x \cos x=-x \cos x$, and because the left hand side is not equal to the right hand side, y is not a solution. Thus, it is FALSE.
(b) Recall that from Problem 1 part (a) that an equilibrium solution has no t dependence because it is a constant solution. In this case, $y=t$ is an isocline, not an equilibrium solution (in fact, all equilibrium solutions are isoclines, but the converse is not true). Therefore the statement is FALSE.
(c) $f(t, y)=\frac{d y}{d x}=\sin ^{-1} y$ is defined at $y=0$, so it passes Picard's existence test. For uniqueness, we have $\frac{\partial f}{\partial y}=\frac{1}{\sqrt{1-y^{2}}}$, which is defined at $y=0$. Hence, it passes Picard's uniqueness test and the statement is TRUE.
(d) If we know that two separate functions are solutions of the differential equation that is both linear and homogeneous, their sum will also be a solution. As this differential equation is both linear and homogeneous the statement is TRUE.
4. (20 points) Match the following equations (1)-(4) with their corresponding direction fields A-D (you do not need to show your work for this problem):

$$
\text { (1) } \frac{d y}{d t}=t \cos y \text {, (2) } \frac{d y}{d t}=y \cos t \text {, (3) } \frac{d y}{d t}=\frac{y}{y+1} \text {, (4) } \frac{d y}{d t}=\tan ^{-1} y
$$

ANSWERS:

(1)-D, (2)-C, (3)-B, (4)-A

