ON THE FRONT OF YOUR BOOK WRITE (1) YOUR NAME, (2) A THREE-PROBLEM GRADING GRID. Show ALL of your work and box in your final answers. Unless otherwise mentioned, an answer without the relevant work will receive no credit. You may solve the problems and each part of a problem in any order you like.

1. (32 points) Consider the equation $y^{\prime \prime}-9 y=9 e^{-3 t}$.
(a) Find the general solution of the homogeneous equation.
(b) Find the particular solution of the non-homogeneous equation.
(c) What is the general solution of the non-homogeneous equation and what is its long time behavior?
(d) Find the solution of the equation that satisfies $y(0)=0, y^{\prime}(0)=-\frac{3}{2}$.
2. (32 points)
(a) Define (in general) the eigenvalues and eigenvectors of a matrix.
(b) Find (and justify your answer) the eigenvalues of $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(c) Find the eigenvectors of A.
(d) What is the dimension of the subspace spanned by all the eigenvectors of A ?
3. (35 points) Answer the following TRUE/FALSE questions. You must write the entire word TRUE or FALSE. You do NOT need to justify your answers.
(a) The equation $y^{\prime \prime}-k y=\cos (\sqrt{2} t)$ corresponds to a resonant system if $k=2$.
(b) $y_{p}=A t e^{-3 t}$ is a suitable guess for the particular solution of $y^{\prime \prime}+6 y^{\prime}+9 y=2 e^{-3 t}$.
(c) $y_{p}=A \cos \left(t^{2}\right)+B \sin \left(t^{2}\right)$ is a suitable guess for the particular solution of $y^{\prime \prime}-y=\cos \left(t^{2}\right)$.
(d) The system $\left\{x_{1}^{\prime}=x_{2}, x_{2}^{\prime}=2 x_{2}-2 x_{1}\right\}$ has the same eigenvalues as $y^{\prime \prime}-2 y^{\prime}+2 y=0$.
(e) Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$. Then A is invertible and the eigenvalues of A^{-1} are $\frac{1}{2}$ and $\frac{1}{3}$.
(f) If A is a 2×2 matrix with a complex eigenvalue then A is invertible.
(g) If A is any 2×2 matrix and c is any number then the eigenvalues of $c A$ are c times the eigenvalues of A.
