ON THE FRONT OF YOUR BOOK WRITE (1) YOUR NAME, (2) A **THREE**-PROBLEM GRAD-ING GRID. **Show ALL of your work and box in your final answers.** Unless otherwise mentioned, an answer without the relevant work will receive no credit. You may solve the problems and each part of a problem in any order you like.

- 1. (32 points) Consider the equation $y'' 9y = 9e^{-3t}$.
 - (a) Find the general solution of the homogeneous equation.
 - (b) Find the particular solution of the non-homogeneous equation.
 - (c) What is the general solution of the non-homogeneous equation and what is its long time behavior?
 - (d) Find the solution of the equation that satisfies y(0) = 0, $y'(0) = -\frac{3}{2}$.
- 2. (32 points)
 - (a) Define (in general) the eigenvalues and eigenvectors of a matrix.
 - (b) Find (and justify your answer) the eigenvalues of $A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.
 - (c) Find the eigenvectors of A.
 - (d) What is the dimension of the subspace spanned by all the eigenvectors of *A*?
- 3. (35 points) Answer the following TRUE/FALSE questions. You must write the entire word <u>TRUE</u> or <u>FALSE</u>. You do NOT need to justify your answers.
 - (a) The equation $y'' ky = \cos(\sqrt{2}t)$ corresponds to a resonant system if k = 2.
 - (b) $y_p = Ate^{-3t}$ is a suitable guess for the particular solution of $y'' + 6y' + 9y = 2e^{-3t}$.
 - (c) $y_p = A\cos(t^2) + B\sin(t^2)$ is a suitable guess for the particular solution of $y'' y = \cos(t^2)$.
 - (d) The system $\{x'_1 = x_2, x'_2 = 2x_2 2x_1\}$ has the same eigenvalues as y'' 2y' + 2y = 0.
 - (e) Let $A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. Then A is invertible and the eigenvalues of A^{-1} are $\frac{1}{2}$ and $\frac{1}{3}$.
 - (f) If A is a 2×2 matrix with a complex eigenvalue then A is invertible.
 - (g) If A is any 2×2 matrix and c is any number then the eigenvalues of cA are c times the eigenvalues of A.

THE END