READ ALL THE INSTRUCTIONS!

- 1. Turn off your cell phones and any other device that may emit disturbing noise. This exam is closedbook and no calculators are allowed.
- 2. Write your name on the front of your bluebook as well as in the space below.

YOUR NAME: _

- 3. There are SEVEN problems on this exam, each worth 200/7 points. Please write a grading grid (enumerated 1..7 and T for total) on the front of your book.
- 4. Start each problem on the top of a new page. SHOW YOUR WORK and EXPLAIN ALL THE STEPS IN YOUR SOLUTION. Explain your reasoning using complete sentences where applicable. A correct answer with no explanation will not receive credit. The only exceptions are <u>Problems 6 and 7</u>, in which you only need to fill in your answer on your exam sheet.
- 5. When you are done, insert your exam sheets in your book and hand them together.
- 1. Consider the differential equation (DE) $\frac{dy}{dt} = \frac{y(2-y)}{1+y}$.
 - (a) Classify the equation as best you can.
 - (b) Find the equilibrium solutions.
 - (c) Using phase lines determine the stability structure of the equilibrium solutions.
 - (d) What is the long time behavior corresponding to the initial conditions y(0) = 1?
 - (e) Sketch the phase lines and the solution curves corresponding to the initial conditions y(0) = 1 and y(0) = 3.

2. Consider the DE
$$\frac{dy}{dt} - \sqrt{t} y = e^{\left(\frac{2}{3}t^{\frac{3}{2}}\right)}$$
.

- (a) Find the Integrating Factor.
- (b) Find the general solution.

TURN OVER

3. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 3 \\ 0 & 4 & -1 \end{bmatrix}$$

- (a) What is the determinant of *A*?
- (b) What are the solutions of $A\mathbf{x} = \mathbf{0}$?
- (c) What is the RREF of *A*?
- (d) What is the product of the eigenvalues of *A*?
- (e) What is the sum of the eigenvalues of *A*?
- 4. Consider the DE $y'' 2y' + y = \frac{e^t}{t}$.
 - (a) Find the general solution of the homogeneous problem.
 - (b) Find a particular solution of the non-homogeneous problem using the method of Variation of Parameters.
 - (c) What is the general solution of the DE?
- 5. Consider the system of DEs $x'_1 = 2x_1 + x_2, x'_2 = x_1 3x_2$.
 - (a) Write the system in the form $\mathbf{x}' = A\mathbf{x}$.
 - (b) Find the eigenvalues of *A*.
 - (c) Find the eigenvectors of A.
 - (d) Classify the stability structure of the equilibrium solution.
 - (e) Sketch the phase portrait of the solutions in the (x_1, x_2) plane.

TURN OVER

6. <u>Match</u> the following equations (1)–(4) with their corresponding direction fields A–D. You do not need to show your work for this problem. Write your answers on your exam sheet.

TURN OVER

7.	(a)	$y(t) = \cos t$ is an equilibrium solution of $y'' + y = 0$.	TRUE	FALSE
	(b)	Picard's Theorem guarantees the local existence and uniqueness of a solution to the IVP $y' = y^{3/2}$, $y(0) = 0$.	TRUE	FALSE
	(c)	The IVP $y' = y^{3/2}, \ y(0) = 0$ has a solution that is defined for all time .	TRUE	FALSE
	(d)	If A and B are commuting matrices then $(AB)^2 = BA^2B$.	TRUE	FALSE
	(e)	If A and B are $n \times n$ matrices and $\exists (AB)^{-1}$ then $A(AB)^{-1}B = I$.	TRUE	FALSE
	(f)	The vectors $\{(1,0,1)^T, (-1,2,1)^T, (0,1,2)^T\}$ span \mathbb{R}^3 .	TRUE	FALSE
	(g)	For three vectors in \mathbb{R}^3 to span \mathbb{R}^3 they must form a basis for \mathbb{R}^3 .	TRUE	FALSE
	(h)	The functions $1 + t$ and $t(1 + t)$ are linearly dependent.	TRUE	FALSE
	(i)	$y_p = Ae^t$ is a suitable guess for the particular solution of $y'' - 2y' + 2y = e^t$.	TRUE	FALSE
	(j)	$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ has three linearly independent eigenvectors.	TRUE	FALSE
	(k)	If <i>A</i> is a 3 × 3 real matrix whose eigenvalues are $\{-1, i, -i\}$ then $\mathbf{x} = 0$		
		is a stable solution of the system of DEs $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$.	TRUE	FALSE
	(1)	One of the eigenvalues of the DE $y''' - y'' + 2y' - 2y = 0$ is $\sqrt{2}i$.	TRUE	FALSE
	(m)	The system of DEs $x' = x + y$, $y' = x^4 - y^4$ has a line of equilibrium solutions in the (x, y) plane.	TRUE	FALSE
	(n)	Let $x' = x + y$, $y' = x^4 - y^4$. The Jacobian matrix of the linearized system around $(x, y) = (1, -1)$ has eigenvalues $\{0, -5\}$.	TRUE	FALSE

HAVE A GREAT SUMMER!