Math 30: Unit 3 Exam

Fall Semester 2006

1. (8 points) You model the population P of cells growing in culture as a function of time by the equation

$$
\frac{d P}{d t}=0.1 P
$$

At time $t=1$, we count 100 cells. Give a formula for the number of cells at $t=0$.
2. (8 points) For a function $f(x)$, its two-term Taylor approximation about $x=x_{0}$ is given by

$$
f(x) \approx f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)+\frac{1}{3!} f^{\prime \prime \prime}\left(x_{0}\right)+\cdots
$$

Find the two non-zero terms of the Taylor approximation for $f(x)=e^{-x}$ about $x=0$.
3. (8 points) Consider the differential equation

$$
\frac{d u}{d t}=f(u)
$$

with the graph of $f(u)$ given below.

Analyze this differential equation graphically. Identify, label and classify all of its equilibrium points directly on the graph above. Using that information, describe the long-time behavior of the solution when $u(0)=u_{0}$.

