Final Exam, Math 30, December 15, 2007

Solve for y explicitly. Indefinite integrals must be in terms of x . Check out useful information in the Appendix.

1) Find the volume of the solid obtained by rotating the given region about the x -axis. ($\mathbf{1 0} \mathbf{~ p t s) ~}$
Region bounded by: $y=2 x, y=x^{2}$
2) Find the average value of the function $u(x)=10 x \sin \left(x^{2}\right)$ on the interval $\lfloor 0, \sqrt{\pi}\rfloor(10 \mathrm{pts})$

Evaluate the following indefinite integrals (10 pts each) solutions must be in terms of x .
3) $\int \sin ^{2}(x) \cos ^{3}(x) d x$
4) $\int \frac{1}{x^{2} \sqrt{x^{2}-9}} d x$
5) $\int \frac{x+1}{x^{2}+5 x+6} d x$
6) Solve the differential equation that satisfies the given initial condition. (10 pts)

$$
\frac{d y}{d t}=y^{2} \sin x, \quad y\left(\frac{\pi}{2}\right)=2
$$

7) Solve the differential equation: $\frac{d y}{d x}=x+y$ where $y(0)=1.0$ ($\mathbf{1 0} \mathbf{p t s}$)

Sketch a graph of the solutions that satisfy the given initial conditions on the slope field map. ($\mathbf{5} \mathbf{~ p t s)}$
i) $y(0)=1.0$
ii) $y(0)=-1.0$

Slope field for $y^{\prime}=x+y$

8) A function $y(t)$ satisfies the differential equation:

$$
\frac{d y}{d t}=y^{4}-13 y^{3}+40 y^{2}
$$

a) Find and plot equilibrium points ($\mathbf{1 0} \mathbf{~ p t s}$)
b) Determine whether equilibrium points are stable, unstable (or perhaps something else). (5 pts)
9) A graph of mice population is shown below. If the population is described by the Logistics Equation (see the Appendix):
a) Determine constants A and K from the graph ($\mathbf{5} \mathbf{~ p t s)}$
b) How long does it take for the initial population to double? ($5 \mathbf{p t s}$)
c) Estimate the growth rate k constant. (Hint: What is $1+$ Aexp(-kt) when the initial population doubles?) ($\mathbf{1 0} \mathbf{~ p t s}$)

10) The population of aphids on a rose plant increases at a rate proportional to the number present.
a) Write a differential equation for population of aphids at time t in days. (10 pts)
b) Find the solution to the differential equation where at $t=0$ there were 1000 aphids and population doubles every 10 days. (10 pts)
11) Newton's Law of cooling states that the rate of cooling is proportional to the temperature difference between the object and its surrounding. (10 pts)

The differential equation for temperature, T, of a coffee cup as a function of time (t) where T_{A} is the ambient temperature of air, $\mathrm{T}_{\mathrm{o}}>\mathrm{T}_{\mathrm{A}}$ is the initial temperature of the coffee and k is the proportionality constant is: (5 pts)
A) $\mathrm{T}^{\prime}=-\mathrm{kT}\left(1-\mathrm{T} / \mathrm{T}_{\mathrm{A}}\right)$
B) $T^{\prime}=-k\left(T-T_{A}\right)$
C) $T^{\prime}=k\left(T-T_{A}\right)$
D) $T^{\prime}=k T / T_{A}$
E) $\mathrm{T}^{\prime}=-\mathrm{kT} / \mathrm{T}_{\mathrm{A}}$

The solution to the differential equation is: (5 pts)
A) $T(t)=T_{A} /(1+A \exp (-k t))$, where $A=\left(T_{A}-T_{o}\right) / T_{o}$
B) $T(t)=T_{A}+T_{o} \exp (-k t)$
C) $T(t)=T_{A} \exp (-k t)-T_{A}+T_{o}$
D) $T(t)=T_{A}+\left(T_{o}-T_{A}\right) \exp (-k t)$
E) $T(t)=\left(T_{o} / T_{A}\right) \exp (-k t)$

Extra Credit (10 pts)

12) For the following predator pray system determine which of the variables, x or y , represent the prey population and which represent the predator population (Explain). Find equilibrium solutions for preditor and prey.
$\frac{d x}{d t}=-.05 x+.0001 x y$
$\frac{d y}{d t}=0.1 y-.005 x y$

Appendix:

Identities:

$\sec ^{2}(x)=\tan ^{2}(x)+1$
$\cos ^{2}(x)+\sin ^{2}(x)=1$
$\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))$
$\frac{d \tan (\theta)}{d \theta}=\sec ^{2}(\theta)$
$\frac{d \sec (\theta)}{d \theta}=\tan (\theta) \sec (\theta)$

Logistics Equation:

$$
\begin{aligned}
& \frac{d P}{d t}=k P(K-P) \\
& P(t)=\frac{K}{1+A \exp (-k t)} \\
& A=\frac{\left(K-P_{0}\right)}{P_{0}}
\end{aligned}
$$

$$
\ln (\mathrm{AB})=\ln (\mathrm{A})+\ln (\mathrm{B})
$$

$$
\ln (2)=0.693
$$

$\ln (3)=1.10$
$\ln (4)=1.39$
$\ln (5)=1.61$

