Midterm 1, Math 30, Fall 2008, 10/6/08

1) Find the volume of a solid when the region bounded by $y=\sin (x)$ and $y=0$ is revolved around the y-axis (10 pts)
2) An enclosure for rare reptiles must maintain an average temperature of 30C. The temperature profile during the day is given by $T(t)=T_{m} \cos \left(\frac{\pi}{48} t\right)$ where t is in hours.
Find T_{m} so that the average temperature during 24 hours is 30 C . (10 pts)

Evaluate the following integrals: Answer must be in terms of x
3) $\int \frac{\sqrt{x^{2}-1}}{x} d x \quad$ (10 pts)
4) $\int \frac{3 x+5}{x^{2}+x-6} d x$ (10 pts)
5) A tank with 2000 gal of water is being drained at the rate given in the diagram. How much water is left in the tank after 50 min ? (12 pts)

Drain rate
gal/min

MATH 30 MIDTERM $10 / t / 08$
(1)

shell methad $v=2 \pi \int_{0}^{\pi} r y d y$

$$
r=x, y=\sin x
$$

$$
\begin{aligned}
V= & 2 \pi \int_{0}^{\pi} x \sin x d x \\
& u=x \quad d r=\sin x \\
& d u=d y \quad v=-\cos x \\
v= & 2 \pi\left(-\left.x \cos x\right|_{0} ^{\pi}+\int_{0}^{\pi} \cos x d x\right) \\
= & \left.2 \pi(-x \cos x+\sin x)\right|_{0} ^{\pi}=2 \pi(\pi)=2 \pi^{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
T_{A v}= & \frac{1}{24} \int_{0}^{24} T_{m} \cos \left(\frac{\pi t}{48}\right) d t=30 \\
= & \left.\frac{T_{m}}{24} \frac{48}{\pi} \sin \left(\frac{\pi t}{48}\right)\right|_{0} ^{24}=\frac{2 T_{m}}{\pi}=30 \\
& \left(T_{m}=15 \pi\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \int \frac{\sqrt{x^{2}-1}}{x} d x \quad \begin{aligned}
x & =\sec \theta \\
d x & =\sec \theta \operatorname{tin} \theta d \theta \\
= & \int \frac{\tan \theta \operatorname{sex} \theta \tan \theta d x}{\sec \theta}=\int \tan ^{2} \theta d \theta \\
= & \int\left(\sec ^{2} \theta-1\right) d \theta=\tan \theta-\theta \quad \frac{x}{1} \sqrt{x^{2}-1} \\
= & \sqrt{x^{2}-1}-\operatorname{coc}\left(\frac{1}{x}\right)+c
\end{aligned}
\end{aligned}
$$

(4) $\int \frac{3 x+5}{x^{2}+x-6} d x \quad \frac{3 x+5}{x^{2}+x-6}=\frac{3 x+5}{(x+3)(x-2)}=\frac{4}{x+3}+\frac{B}{x-2}$

Common dinomurtita: $\quad 3 x+5=A(x-2)+B(x+3)$

$$
\begin{aligned}
& 3 X+5=(A+B) x+(3 B-2 A) \\
& A+B=3 \quad *-3=-3 A-3 B=-9) \\
& 3 B-2 A=5 \quad \frac{3 B-2 A=5}{-5 A}=-4 \\
& A=\frac{4}{5} \\
& B=3-A=3-\frac{4}{5}=\frac{11}{5}
\end{aligned}
$$

$$
\int \frac{(3 x+5) d x}{x^{2}+x-6}=\frac{4}{5} \ln |x+3|+\frac{11}{5} \ln |x-2|+c
$$

(9) Cimount of water drained from bonk

$$
\int_{0}^{50} r(t) d t \quad r(t)= \begin{cases}30 & 0<t<30 \\ -(t-60) & t \geq 30\end{cases}
$$

$$
\begin{aligned}
\int_{0}^{50} r(t) d t & =\int_{0}^{30} 30 d t+\int_{30}^{50} 60-t d t \\
& =\left.30 t\right|_{0} ^{30}+\left.\left(60 t-\frac{t^{2}}{2}\right)\right|_{30} ^{50} \\
& =900+\left(3000-\frac{2500}{2}-1800+\frac{900}{2}\right) \\
& =1300
\end{aligned}
$$

Omannt of writer left $2000-1300=700$ gal

