Midterm 3, Math 30, April 28, 2008

1) Average waiting time in a sandwich shop is 2 min . The manager placed an ad offering customers waiting for more than 5 min free drink. What percentage of customers will get a free drink? (Hint: Probability density function for waiting time is $p(t)=\frac{1}{\mu} e^{-\frac{t}{\mu}}$ where μ is the average time.) (10 pts)
2) Find the function $f(x)$ that passes through a point $(1,-1)$ and whose slope at (x, y) is $y^{2} x$. (10 pts)
3) Trout population in the lake is modeled by the equation.
$\frac{d P}{d t}=P^{2}(P-1500)(2000-P)$
a) Plot the fish population over time if the starting population is 1000 . ($5 \mathbf{p t s}$)
b) Plot the fish population over time if the starting population is 2100 . ($5 \mathbf{p t s}$)
(Note: In your drawing clearly label the numbers for the starting and final populations after a long time)
4) Write down but don't solve differential equation for following problems.
a) A virus infects cells at the rate proportional to the product of the fraction of the infected cells and the fraction of healthy cells. Let $\mathrm{I}(\mathrm{t})$ be the fraction of infected cells. (5 pts)
b) Radioactive atoms decay at the rate proportional to their number. Let $\mathrm{N}(\mathrm{t})$ be the number of radioactive atoms. (5 pts)
5) Bacteria culture grows at the rate of $\frac{d P}{d t}=\lambda P$. If $\lambda=.01 /$ hour, how long will it take for the population to double? (10 pts)
