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by

Daniel Thompson
May 2011

University of California, Merced

Abstract

This project concerns the reconstruction of a signal, which corresponds to either an image
or a temporally-varying scene. Signal recovery can be accomplished through finding a sparse
solution to an `2-`1 minimization problem, which can be solved efficiently by gradient projec-
tion. In imaging applications, the signal of interest corresponds to nonnegative pixel intensities.
Hence, additional nonnegativity constraints are placed upon the `2-`1 minimization problem.
This results in a more difficult problem to solve, but one with a higher potential for accurate
reconstructions. This work focuses on a gradient projection approach for sparse signal recovery
that incorporates nonnegativity constraints in the minimization problem. For video recovery
we exploit inter-frame correlations to improve upon the näıve approach of solving each frame
independently. Numerical results are presented for both an image and video experiment to
demonstrate the effectiveness of this approach.
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1 Introduction

This research is concerned with the reconstruction of a sparse signal from linear, potentially low-
dimensional, observations. Specifically the signal of interest is that of an image. We assume our
observation y ∈ Rm is a linear projection of the true signal f? ∈ Rn. Then we can model our
observation as the linear system y = Rf? + η where R ∈ Rm×n is a linear projection matrix and
η is noise. Our goal is to recover f? from our observation y. This is not as simple as using the
inverse R−1 to solve f? = R−1(y− η). The matrix R is not necessarily square, and in the case that
R is square, it is not necessarily invertible. Therefore we must find an estimate to f? in some other
way than using the inverse. Let us assume for now η = 0, the noiseless case. Thus we now have
y = Rf?. If y is an element of the column space of R, i.e. there exists a f̂ such that y = Rf̂ , then
f̂ may not be unique. This is the case in which the null space of R is nontrivial. In particular if
R is underdetermined with m < n, then R necessarily has a nontrivial null space. Since R may be
underdetermined, we could find the solution with the lowest nonzero elements. This solution can
be found through a different problem formulation that includes a data fitting term balanced with
a sparsity enforcing term.

To enforce fidelity to the data in our new problem formulation we can use a least squares
term ‖y − Rf?‖2. We must solve for the signal that minimizes this term due to the noise. Alone
this term does not take into account sparsity. Therefore we must include a sparsity enforcing term
in our problem formulation. The `0 norm counts the number of nonzero entries in a vector. Hence
we want to minimize ‖f?‖0 subject to y = Rf?. However, we must determine the positions of
nonzero elements which is a combinatorial problem and is therefore extremely difficult. Therefore
we seek a formulation that can be solved more simply. Work by Candès, Romberg and Tao [4]
indicates that we can instead minimize ‖f?‖1 subject to y = Rf? to recover the sparsest solution.
Minimizing the `1 norm allows us to use non-combinatorial optimization methods when solving for a
reconstruction. By using the `2 norm and `1 norm we may now set up a convex `2-`1 optimization
problem, discussed in Sec. 2. This optimization problem can be solved efficiently by gradient
projection, discussed in Sec. 3.

There are multiple methods that can be used for sparse signal recovery for example, homo-
topy algorithms such as Least Angle Regression (LARS)[6], Iterative shrinking/thresholding (IST)
algorithms [7], and matching pursuit [11]. However, such algorithms do not take into account the
important property that pixel values of images correspond to light intensities and are naturally non-
negative quantities; thus, their signal estimates may contain negative pixel intensity values. With
lower computational cost than some other standard methods, gradient projection is particularly
effective for sparse recovery problems and in the case of Gradient Projection for Sparse Recon-
struction (GPSR) [8] has been shown to produce estimates faster than state of the art competing
methods. We wish to extend this approach to account for nonnegative pixel values. Our goal is to
reconstruct an image from a blurred noisy observation by enforcing nonnegativity constraints and
show that this leads to an improvement over the conventional gradient projection methods. We ex-
tend the developed method to the reconstruction of a sequence of images in a video. In applications
such as surveillance and monitoring, the scene changes very little from frame to frame. Therefore
inter-frame differences will be very sparse, and `2-`1 minimization is particularly well-suited for
this type of problem if we express the variables as the frame differences. Just as in the previous
method we improve upon current methods by enforcing nonnegativity in our frame estimates
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2 The Optimization Problem

Recent development in compressed sensing theory indicates that solving the following `2-`1 mini-
mization problem

f̂ ≡ arg min
f∈Rn

1

2
‖y −Rf‖22 + τ‖f‖1

will lead to a highly accurate signal estimate with very high probability [5, 10]. Here f̂ denotes our
estimate, y is our noisy observation, R is a linear projection matrix, and τ > 0 is a regularization
parameter. The `2 term is a least-squares term that enforces fidelity to the data while the 1-
norm term promotes sparsity in the solution. A larger weight on the `1 term encourages a greater
reduction in this term than in the `2 term in the minimization process. Thus choosing higher values
for τ forces f to be more sparse. Since the signal of interest is an image and therefore corresponds
to nonnegative pixel intensities, we impose a nonnegativity constraint on the estimate. Thus we
instead solve

f̂ ≡ arg min
f∈Rn

1

2
‖y −Rf‖22 + τ‖f‖1 (1)

subject to f ≥ 0.

Often, the signal f? is not sparse in the canonical basis but rather in some other basis, W . Therefore,
we write f? = Wθ?, where θ? is sparse. In this research, we use the wavelet basis since most natural
images are sparse in this basis. In addition, the discrete wavelet transform W is orthogonal, and
matrix-vector multiplication can be performed quickly and efficiently. We now rewrite (1) as

θ̂ ≡ arg min
θ∈Rn

1

2
‖y −RWθ‖22 + τ‖θ‖1

subject to Wθ ≥ 0 (2)

f̂ ≡ Wθ̂.

3 Gradient Projection

One advantage to using gradient projection is that the negative gradient always guarantees a
decrease in the objective function with a proper step length. Although using the negative gradient
generally has slow convergence, proper step lengths of each iterate can yield improved performance
over the classical steepest-descent method [1]. To solve (2) using gradient-based optimization the
objective function must be differentiable. The 1-norm term in (2) is not differentiable at θi = 0
for all i. We can reformulate the objective function as a differentiable function by decomposing
θ into its positive and negative components, θ = u − v with u, v ≥ 0 and uT v = 0. This way
‖θ‖1 = 1

T
n (u + v), where 1n ∈ Rn is the n-vector of ones, and is now differentiable everywhere.

Rewriting (2) in terms of these new variables, we get

(û, v̂) ≡ arg min
u,v∈Rn

1

2
‖y −RW (u− v)‖22 + τ1Tn (u+ v)

subject to u, v ≥ 0, W (u− v) ≥ 0 (3)

f̂ ≡ W (û− v̂).
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For the purpose of simplifying notation we let

z =

[
u
v

]
∈ R2n, W̃ =

[
W −W

]
∈ Rn×2n, B =

[
I2n

W̃

]
∈ R3n×2n

where I2n is the identity matrix of size 2n. Then we can rewrite (3) as

ẑ ≡ arg min
z∈R2n

φ(z) ≡ 1

2
‖y −RW̃z‖22 + τ1T2nz

subject to Bz ≥ 0 (4)

f̂ ≡ W̃ ẑ

and now 12n ∈ R2n. Note, however, that this minimization problem now has twice as many variables
as (2). Additionally, new nonnegativity constraints on the variables are introduced.

Now we can apply gradient projection to (4). By choosing an appropriate step length along
the negative gradient, i.e., the steepest descent, we can guarantee a decrease in the objective
function. However, with a large enough step length this direction may result in an infeasible point.
To maintain feasibility we then choose the direction with the smallest possible step length back to
the feasible set. Thus we project back onto the feasible set. Then a second step length is computed
to minimize the objective function in this new direction. This is known as the two-step gradient
projection method [1]. In this approach we move from iterate z(k) to z(k+1) by first defining the
vector z(k) − α(k)∇φ(z(k)) from the method of steepest descent and projecting it onto the feasible
set

z
(k)
P (α(k)) = P

(
z(k) − α(k)∇φ(z(k))

)
. (5)

Here, P is the projection operator onto the feasible set F ≡ {z ∈ R2n : Bz ≥ 0}, and α(k) > 0 is
the step length along the negative gradient. Now we perform a line search to find the next iterate.
We define δ(k) = (z(k) − α(k)∇φ(z(k)))+ − z(k), where (·)+ zeros negative values. Then we find the
scalar β(k) ∈ [0, 1] that minimizes φ(z(k) + β(k)δ(k)) and set

z(k+1) = z(k) + β(k)
(
z

(k)
P (α(k))− z(k)

)
.

There are multiple ways to determine α(k). In the case of this research we use the approach described
in the Barzilai-Borwein variant of GPSR, known as GPSR-BB, which is among the fastest of GPSR
variants tested [8]. We choose this method of determining α(k) because it has been shown to have a
lower computational cost and improved performance over the classical steepest descent method [1].
The GPSR-BB algorithm is a gradient projection algorithm that solves the unconstrained problem
(2). This approach differs from the basic GPSR algorithm in how the step length α(k) is chosen
which is based on work from Barzilai and Borwein [1]. This approach determines the next step
length through a quasi-Newton method. We define ∆z(k) = z(k+1) − z(k) and by Taylor expansion
we have

φ(z(k) + ∆z(k)) ≈ φ(z(k)) +∇φ(z(k))T∆z(k) +
1

2
∆(z(k))THk∆z

(k)

where Hk is an approximation to the Hessian of φ at z(k). By taking the gradient of this approxi-
mation, setting it equal to zero and assuming Hk is invertible, we can derive

∆z(k+1) = −H−1
k ∆φ(z(k))
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(a) (b)

Figure 1: A two-dimensional illustration of gradient projection onto a linearly constrained feasible
set F . The matrix-vector product BTµ? is defined in sec 4. (a) relates to Prop. 1a, where z̄ is not
a stationary point thus there exists a scalar ᾱ > 0 such that for all α ∈ (0, ᾱ], φ(z̄P (α)) < φ(z̄).
(b) relates to Prop. 1b where z̄ is a stationary point hence for all step lengths α we project back
onto z̄, meaning for all α ≥ 0, z̄P (α) = z̄

which is the same as
z(k) = z(k) −H−1

k ∇φ(z(k)).

Thus we choose αk so that αkI approximates H−1
k . Here [1] chooses the approximation to be a

multiple of the identity matrix, Hk = skI, where sk is a scalar chosen such that this approximation
has similar behavior to the true Hessian over the most recent step, i.e., sk minimizes ‖(z(k) −
z(k−1)) − sk(φ(z(k)) − φ(z(k−1)))‖22. The purpose of this choice of sk is to provide a two-point
approximation to the secant equation underlying quasi-Newton methods. For specifics of how α(k)

is computed see [1, 8].
For ease of notation, we drop the superscripts corresponding to the iterates z(k) and denote

the current iterate by z̄. We define

z̄(α) = z̄ − α∇φ(z̄) and z̄P (α) ≡ P (z̄ − α∇φ(z̄)).

With this the following proposition holds [3]

Proposition 1: Let z̄ be a feasible point, i.e., Bz̄ ≥ 0.
(a) If z̄ is not a stationary point, then there exists a scalar ᾱ > 0 such that

φ(z̄P (α)) < φ(z̄), for all α ∈ (0, ᾱ].

(b) The point z̄ is stationary if and only if

z̄P (α) = z̄ for all α ≥ 0.

Proof:
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(a) Since z̄ is not a stationary point we are not at a minimum. The next iterate is chosen by
moving along the negative gradient, the direction of greatest decrease. Thus we are guaranteed
that a sufficiently small step length, ᾱ, will cause a decrease in the objective function. If this step
length moves the next iterate out of the feasible set then the projection will move each iterate in
the direction of greatest decrease along the border. Thus if z̄ is not a stationary point then there
exists a ᾱ such that φ(z̄P (α)) < φ(z̄), for all α ∈ (0, ᾱ].

(b) See the proof of part (c) of Lemma 3.1 from [3]. The theorem and proof are similar.

We have reached an optimal point when for every step length chosen we project back onto the
point we started with. Figure 1 provides an illustrated example of this gradient projection and
proposition.

4 Dual Formulation

The projection onto the feasible set F is the solution to

z̄P (α) ≡ arg min
z∈R2n

π(z) ≡ 1

2
‖z − z̄(α)‖22 (6)

subject to Bz ≥ 0.

Since the projection must be solved at each iterate k, (6) must be solved easily and efficiently.
Unfortunately solving this minimization problem can be difficult due to the linear constraints. The
constraints u, v ≥ 0 can be satisfied by zeroing negative entries; however, enforcing the constraint
W̃z ≥ 0 is not as simple. What we wish to do is set up a related problem in which the optimal
solution coincides with that of the projection problem (6). Therefore we propose solving the
Lagrange dual problem associated with the primal problem (6). Since (6) is a minimization problem,
its dual will be a maximization problem in which the optimal solution provides a lower bound on
the minimum value of (6). In the case of this research solving the dual will lead to an easier
optimization problem, and the minimum value of the primal problem equals the maximum value
of the dual which will help us define the projection z̄P (α).

To formulate the dual problem we must first form the Lagrangian which involves incorporating
the constraints into the function by augmenting the objective function with a weighted sum of the
constraints. Therefore, the Lagrangian L : R2n × R3n → R associated with (6) is given by

L (z, µ) =
1

2
‖z − z̄(α)‖22 − µTBz,

with Lagrange multipliers µ ∈ R3n. Next we formulate the Lagrange dual function g : R3n → R,
defined as the minimum value of the Lagrangian over z and given by

g(µ) = inf
z

L (z, µ).

The dual function yields a lower bound on the optimal value of (6) for any µ ≥ 0, i.e., g(µ) ≤ π(z?).
To show this we let z̃ be a feasible point for (6). Therefore we have z̃, Bz̃, π(z̃) ≥ 0. Now we
assume µ ≥ 0. Then we have µTBz̃ ≥ 0. Since both terms in the Lagrangian are positive we have

L (z̃, µ) =
1

2
‖z̃ − z̄(α)‖22 − µTBz̃ ≤

1

2
‖z̃ − z̄(α)‖22.
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Hence,
g(µ) = inf

z
L (z, µ) ≤ L (z̃, µ) ≤ π(z̃).

The best lower bound can be obtained by solving the following Lagrange dual function:

maximize g(µ) (7)

subject to µ ≥ 0.

Since g(µ) = inf
z

L (z, µ) we wish to find the point z that would yield this infimum. To do so we

calculate ∇zL (z, µ) = 0, from which we find

z = z̄(α) +BTµ. (8)

Substituting (8) in to (7), the dual associated with the primal problem (6) becomes

µ? ≡ maximize
µ∈R3n

g(µ) = −1

2
µTBBTµ− µTBz̄(α) (9)

subject to µ ≥ 0.

We say strong duality holds when for optimal µ∗ and z̄p(α), g(µ∗) = π(z̄p(α)). This means the
optimal value to the dual and primal problems are equal. Therefore if we have the optimal solution
to the dual problem we can solve for the optimal argument to the primal problem. Generally
strong duality does not hold; however, in this case the objective function π(z) is convex and the
constraints Bz ≥ 0 are affine. Therefore the weaker version of Slater’s Condition [2] holds and we
have strong duality. Thus, the solution to (6) can then be defined from (8) as

z̄P (α) ≡ z̄(α) +BTµ?

by solving (9), which is an easier optimization problem to solve than (6) because the constraints in
(9) are simple bound constraints and those in (6) contain linear constraints.

5 Solving the dual

Now we have the projection z̄p(α) in terms of µ?. Therefore we must solve the dual (9). To do this
we reformulate the dual as a minimization problem and partition µ as µ = [ψ; ζ], where ψ ∈ R2n

and ζ ∈ Rn. Thus (9) can be equivalently written as

minimize
µ∈R3n

h(µ) ≡ 1

2
‖ψ + W̃ Tζ + z̄(α)‖22 −

1

2
‖z̄(α)‖22 (10)

subject to ψ, ζ ≥ 0.

We also see that h(µ) can be expanded to yield

h(µ) =
(1

2
‖ψ‖22 + ψTz̄(α)

)
+ ζT W̃ψ +

(
‖ζ‖22 + ζT W̃ z̄(α)

)
.

Since we have partitioned µ, we see now that h(µ) is almost separable with respect to ψ and ζ.

Only the ζT W̃ψ term couples the variables. This makes component-wise minimization a reasonable
approach to solving for µ because many terms would go to zero when differentiating. First we fix ζ
and minimize with respect to ψ, and then fix the computed ψ and optimize for ζ. We currently do
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not have proof that this method converges; however, this process produces a sequence of monoton-
ically decreasing objective function values (see below). Moreover, from numerical experience, only
a few iterations of ψ and ζ are needed to produce an accurate estimate of z̄p(α). We now describe
each step more explicitly.

Step 1. Given ζj−1 from the previous iterate, solve

ψj = arg min
ψ∈R2n

1

2
‖ψ‖22 + ψT

(
z̄(α) + W̃ Tζj−1

)
(11)

subject to ψ ≥ 0

which comes from the parts of h(µ) that do not go to zero when optimizing. By taking the derivative
and setting equal to zero we find the solution is given by

ψj =
[
−
(
z̄(α) + W̃ Tζj−1

)]
+

(12)

where [x]+ represents the positive part of x.
Step 2. Given ψj , solve

ζj = arg min
ζ∈Rn

‖ζ‖22 + ζT W̃
(
z̄(α) + ψj

)
(13)

subject to ζ ≥ 0.

By taking the derivative and setting equal to zero we find the solution is given by

ζj =
1

2

[
−W̃

(
z̄(α) + ψj

)]
+
. (14)

Note that the sequence {h(υj , ζj)} produced by this alternating procedure monotonically decreases
since

h(υj , ζj) ≥ h(υj+1, ζj) ≥ h(υj+1, ζj+1). (15)

The result from component-wise minimization must yield a feasible solution, meaning f = W̃zj ≥ 0
where we define zj from (8) as zj ≡ z̄(α) +BTµj . Then

W̃zj = W̃
(
z̄(α) +BTµj

)
= W̃ z̄(α) + W̃υj + 2ζj

Substituting the expression for ζj from (14) yields

W̃zj = W̃ z̄(α) + W̃υj +
[
−W̃

(
z̄(α) + υj

)]
+

=
[
W̃
(
z̄(α) + υj

)]
+
≥ 0.

Therefore we may terminate at any iteration and have a feasible solution.

6 Numerical Experiments

We want to compare the results of the proposed Linearly Constrained Gradient Projection (LCGP)
method to a similar method that does not enforce nonegativity in the reconstruction. Thus we
compare results to those of Gradient Projection for Sparse Reconstruction (GPSR) which is also uses
gradient projection to find an estimate but allows for negative pixel values. To show the importance
of a nonnegative reconstruction we also compare results with GPSR thresholded (GPSR-T) which
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zeroes the resulting negative pixel values of GPSR. In addition, we run an experiment to test how
well a hybrid between algorithms affects our results. For this we initialize LCGP with the results
of GPSR-T, which we call I-LCGP. Within the same time limit these algorithms will estimate the
same image from the same observation.

The signal to be reconstructed corresponds to a 256×256 gray-scale image of craters on the
planet Mercury [12]. From the true image f? we create our own observations. We choose the
blur operation R to be the same as that used in Experiment 2 of [8]. After the blur operation
we add zero-mean Gaussian noise of variance σ2 = 25. This means we add a matrix in which the
values range from −5 to 5, the mean is zero, and values are normally distributed. In practice our
observations are not always of high precision. Thus we quantize the result to an accuracy of b = 3
bits per pixel. Quantization limits the accuracy of our observations by reducing the number of
colors used to represent the image, and in this case b = 3 bits per pixel is 8 colors. Each algorithm
should have ample time to reconstruct the observation, and from experience we choose 10 seconds
total for each algorithm. For I-LCGP, we first run GPSR for 5 seconds, threshold the result,
initialize LCGP and run it for an additional 5 seconds. We also require an optimal τ value for each
method which is determined by running each algorithm for the given time budget and minimizing
the root mean square (RMS) defined as RMS ≡ ‖f̂ − f?‖/‖f?‖. For I-LCGP the optimal τ value
is found first for GPSR over 5 seconds, then using that result we independently find the optimal τ
for the initialized LCGP over 5 seconds. Table 1 shows the averaged resulting minimum RMS from
each method from 10 different observations, which differed only in the Gaussian noise η. Figure
2 contains the true signal f?, a degraded observation, and a reconstruction from each method.
The figure also includes a magnified region with a contrast-enhancing colormap to highlight the
differences between the GPSR-T reconstruction and the LCGP reconstruction.

Ten Averaged Simulations
Method RMS (%)

GPSR 26.08969
GPSR-T 24.86347
I-LCGP 24.00852
LCGP 23.87412

Table 1: Resulting average RMS values over ten simulations for each method considered, where
RMS ≡ ‖f̂ − f?‖/‖f?‖.

From the table we see that GPSR-T yields an improved reconstruction over GPSR which
highlights the importance of a nonnegative reconstruction. We also see that LCGP yields the
lowest RMS value which shows that by adding constraints to the optimization problem to yield
nonnegative solutions we see a greater increase in performance. The RMS value from the I-LCGP
approach is between GPSR-T and LCGP, which shows that it is more effective to run just LCGP
over the time budget. The differences between the different methods are subtle but by considering
the image location shown in Figures 2(g) and 2(h) we see that the GPSR-T solution contains
blocking artifacts near boundaries. The LCGP reconstruction however has fewer blocking artifacts,
and captures regions of low intensity more accurately.

7 Video Expansion

Now that we have an established method to reconstruct a single image we wish to extend this
method to a video comprised of a series of images. The naive solution to such a problem would be
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(a) True Intensity (b) Degraded Observations (c) GPSR Reconstruction

(d) GPSR-T Reconstruction (e) LCGP Reconstruction (f) I-LCGP Reconstruction

(g) Cropped GPSR Solution (h) Cropped LCGP Solution

Figure 2: Results of our numerical experiments. Here we show (a) the true intensity f , (b) the
degraded observations y. (c) the reconstruction using GPSR, (d) the reconstruction using GPSR-T.
(e) the reconstruction with the proposed LCGP method, (f) the reconstruction using I-LCGP. The
images (g) and (h) crop to a particular region (in red square) in the reconstructions (d) and (e)
using a different colormap to highlight the differences. Note the blocking and spurious artifacts
near boundaries and in regions of near-zero intensity present in the GPSR solution that are less
pronounced in the LCGP solution.
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to reconstruct each frame individually. In this case we still solve the `2-`1 minimization problem

f̂t ≡ arg min
ft∈Rn

1

2
‖yt −Rtft‖22 + τ‖ft‖1 (16)

subject to ft ≥ 0.

Here t denotes the current frame, and just as in Sec. 2 the problem can be rewritten as

θ̂t ≡ arg min
θt∈Rn

1

2
‖yt −RtWθt‖22 + τ‖θ‖1

subject to Wθt ≥ 0 (17)

f̂t ≡ Wθ̂t.

This leads us to estimating each frame by the previous method. However, we can improve upon
our previous approach by making the assumption that the scene changes only small amounts from
frame to frame. With this assumption we can take advantage of the correlation between frames. If
the changes from frame to frame are small we have that f?t ≈ f?t+1, and consequently, θ?t ≈ θ?t+1.
Therefore the solution to frame t is often a good approximation to the next frame. Thus we use our
solution at frame t as the initialization for frame t+1, i.e. θ0

t+1 = θ̂t. This approach can be improved
upon further by solving multiple frames simultaneously and again exploiting our assumption.

To solve two frames simultaneously we can set up the optimization problem

minimize
θt,θt+1

1

2

∥∥∥∥[ yt
yt+1

]
−
[
Rt 0
0 Rt+1

] [
W 0
0 W

] [
θt
θt+1

]∥∥∥∥2

2

+ τ

∥∥∥∥[ θt
θt+1

]∥∥∥∥
1

subject to Wθt,Wθt+1 ≥ 0.

However, this formulation is separable and is equivalent to solving (17). Instead we want to solve
some problem that relates the solutions θ?t and θ?t+1 and takes advantage of our assumption that the
images change slightly from frame to frame. Since θ?t ≈ θ?t+1, the frame difference ∆θ?t = θ?t+1 − θ?t
must be much more sparse than either frame. Therefore `2-`1 minimization would be well-suited
here by expressing the variables as the frame differences. Solving for two frames simultaneously we
then formulate the problem to solve for θ?t and the difference ∆θ?t instead of θ?t and θ?t+1. Now we
solve the coupled optimization problem[

θ̂t
∆θ̂t

]
= arg min

θt,∆θt

1

2

∥∥∥∥[ yt
yt+1

]
−
[
Rt 0
0 Rt+1

][
W 0
W W

][
θt

∆θt

]∥∥∥∥2

2

+τ1‖θt‖1 + τ2‖∆θt‖1 (18)

subject to Wθt ≥ 0, W (θt + ∆θt) ≥ 0

We notice now that there are two τ values. We know ∆θt will be more sparse than θt. Recall that
higher τ values promote more sparsity, thus τ2 > τ1 > 0. With our estimates θ̂t and ∆θ̂t from (18)
we initialize θ0

t+1 ≡ θ̂t + ∆θ̂t which is a very accurate estimate to the solution θ?t+1. Then we solve

for θ?t+1 and ∆θ̂?t+1 = θ?t+2 − θ?t+1. This approach can be extended to solving for more than two
frames but, as the number of frames solved for simultaneously increases so does the computational
cost. Through the use of gradient projection and the dual, (18) and higher frame formulations can
be solved similarly to the single image case. Although not shown here, the multiframe formulations
can be solved nontrivially by using the approaches in Sec. 3 through Sec. 5.
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8 Numerical Results for Video Expansion

These experiments are similar to those of the single image case in Sec. 6. We compare the results
of the proposed LCGP method with those of GPSR and GPSR-T. Each algorithm reconstructs
the same observations with the same time constraints. The video considered is from the Apollo
11 moonwalk [9]. We choose this video because there is no camera movement, and the little
movement in the scene is from astronauts walking in the distance. For this experiment we take a
60 frame segment from the video but estimate only the first 50. We choose to do this because when
reconstructing frame 50 the multiframe algorithms require further frames to work with. The frames
to be reconstructed consist of a 128×256 cropped section in gray scale. The blurring operation R
used to create our observation is the same as in the experiments of Sec. 6. Although in the problem
formulation of the previous section each observation has a different blurring operation Rt, in this
experiment all observations use the same blurring operator R. Next, zero mean Gaussian noise is
added with variance σ2 = 16. Thus the noise matrix we add has zero mean, is normally distributed
and contains values that range from −4 to 4. Each algorithm is allotted a maximum time t = 3
seconds to reconstruct a group of frames. We choose this time limit because using a multiframe
method on a single group of frames will not yield a very accurate reconstruction, as seen by the
initial values of Figure 3 (b). However, with the initialization step future frame reconstructions
become more accurate than earlier reconstructions. In these experiments we use each algorithm to
reconstruct 1, 2, 4, 6, and 8 frames simultaneously. From experience we notice that these methods
on average stabilize around frame 20, thus we choose the optimal τ values to be those that yield
the minimum average RMS over frames 20 to 50.

(a) LCGP vs GPSR-T RMS values, 1,2,4,6,8 frame
methods

(b) LCGP vs GPSR-T RMS values, 1,2,4,6 frame meth-
ods

Figure 3: Results of our numerical experiments for multiframe methods. Here we show (a) RMS
evolution at each time frame for 1,2,4,6 and 8-frame GPSR-T and LCGP methods, (b) RMS
evolution at each time frame for 1,2,4 and 6-frame GPSR-T and LCGP methods.

Figure 3 shows us the resulting RMS graphs of each method, and we see that the proposed
LCGP methods which enforce nonnegativity constraints are an improvement over the GPSR meth-
ods. Not shown are the GPSR results, only the GPSR-T results. This is because GPSR-T is an
improvement over GPSR and always yields lower RMS values. Figure 3 (a) includes the 8-frame
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methods and Figure 3 (b) does not. With the 3 second time limit the 8-frame methods cannot per-
form enough iterations to produce an accurate reconstruction, and the result is a disproportionate
increase in the RMS seen in Figure 3 (a). To get a closer look at the other methods we include
Figure 3 (b) which does not include the 8-frame methods. The earlier frame reconstructions of the
multiframe methods also lack sufficient iterations and the result is the high initial RMS seen in
the graph. We note that LCGP performs fewer iterations than GPSR within a given time limit
and thus breaks down faster than GPSR as seen in the 8-frame case in Figure 3 (a). This effect is
also noticed in the case of LCGP6 (6 frame method for LCGP) in which the rate of decline falls
between that of LCGP2 and LCGP4. From the graph of Figure 3 (b) we see that with the exception
of GPSR2-T, all the multiframe methods yield a significant improvement over both single frame
methods. Generally the LCGP methods have higher initial RMS values than the GPSR-T methods
due to LCGP having a higher computational cost and fewer overall iterations. However, by frame
20 all methods have stabilized and we see that LCGP2, LCGP4, and LCGP6 overtake all other
methods and have the lowest RMS values.

Figure 4 compares the reconstruction of the 50th frame of GPSR6-T and LCGP4. We choose
6-frame for GPSR and 4-frame for LCGP to compare because they have the lowest RMS values
for the 50th frame of the GPSR-T and LCGP algorithms. Similarly to the single image case
the differences between each reconstruction are not immediately noticeable but by focusing on a
particular region we can see that the GPSR reconstruction contains more noise than the LCGP
reconstruction, particularly in regions of low intensity.

(a) True Intensity (b) Degraded Observations

(c) GPSR6-T Reconstruction (d) LCGP4 Reconstruction

Figure 4: Reconstructions of our numerical experiments for multiframe methods. Here we show
(a) the true intensity f , (b) the degraded observations y, (c) the reconstruction using GPSR6-T,
(d) the reconstruction with the proposed LCGP4 method. We notice that GPSR6-T contains noise
that is less pronounced in LCGP4 and can be most easily seen in regions of near-zero intensity.
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9 Conclusion

In this research we present a method for nonnegative, sparse reconstruction of an image through
solving a constrained `2-`1 minimization problem, and extend this method to a video. Incorporating
the nonnegativity constraints into the problem, then solving through the use of gradient projection
and the dual has proven to yield accurate reconstructions. Our numerical results in Sec. 6 show
that LCGP reconstructions are an improvement over GPSR, another gradient projection method
that does not take into account the nonnegative pixel values of images. With the assumption that
scenes change only small amounts from frame to frame, the developed extension takes advantage of
the correlation between frames to improve upon naively solving each frame individually, despite ad-
ditional computational costs. Our numerical results in Sec. 8 show that by solving multiple frames
simultaneously and expressing the variables as frame differences we have a significant improvement
over the single frame solution. In addition, by incorporating nonnegativity constraints we can fur-
ther improve upon the multiframe reconstructions. This research highlights the improvements that
can be achieved by attaining a nonnegative recosntruction of an image.[8]
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