
UNIVERSITY OF CALIFORNIA, MERCED

On the Implications of Incompressibility

of the Quantum Mechanical Wavefunction

in the Presence of Tidal Gravitational Fields

A dissertation submitted in the partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

by

Stephen Minter

Committee in Charge

Professor Raymond Chiao, Chair

Professor Boaz Ilan

Professor Arnold Kim

Professor Kevin Mitchell

Professor Jay Sharping

2010





Copyright

Stephen Minter, 2010

All rights reserved.





 

polo_481
Pencil

polo_481
Rectangle

polo_481
Rectangle



.

polo_481
Rectangle



Dedicated, in endless appreciation and love,
to James and Terry McGu¢ n





Contents

Contents ix

List of Figures xii

List of Tables xiv

1 Acknowledgements 15

2 Curriculum Vitae 17

3 Abstract 22

4 Introduction 23

5 Quantum Incompressibility of the Hydrogen Atom Electron Wavefunction 25

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Wavefunctions and Circular States of the Hydrogen Atom . . . . . . . . . . . . . . . 27

5.3 Free Fall of Classical Matter: Point Masses and Extended Objects in Tidal Gravita-

tional Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Free Fall of the Hydrogen Atom through Vacuum in Tidal Gravitational Fields . . . 34

5.5 The DeWitt Interaction Hamiltonian Operator . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Quantum Incompressibility of the Rydberg Atom in a Weak Magnetic Field . 44

5.5.2 Quantum Incompressibility of the Rydberg Atom in a Weak Tidal Gravita-

tional Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.3 Gauge Invariance of Energy Shifts . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Down the Rabbit Hole: Free Fall Through a Massive Gravitational Source . . . . . . 60

5.6.1 Free Fall of Classical Systems Within the Rabbit Hole . . . . . . . . . . . . . 60

5.6.2 Free Fall of the Hydrogen Atom Within the Rabbit Hole . . . . . . . . . . . . 65

5.7 Classical Objects and Circular Rydberg Atoms in Free Fall . . . . . . . . . . . . . . 70

ix



5.7.1 Classical Objects and Circular Rydberg Atoms in Free Fall Through the Rab-

bit Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.7.2 Classical Objects and Circular Rydberg Atoms in Free Fall in the Field of a

Point Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Gravitational Potential Inside and Outside the Rabbit Hole . . . . . . . . . . . . . . 74

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Re�ection of Gravitational Microwaves from Thin Superconducting Films 79

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 The Uncertainty Principle Limits the Applicability of the Equivalence Principle . . . 86

6.4 The Interaction of an EM Wave with a Thin Metallic Film . . . . . . . . . . . . . . 93

6.5 A Criterion for the Specular Re�ection of EM Waves from Superconducting Films . 99

6.6 The Gravitational Characteristic Impedance of Free Space . . . . . . . . . . . . . . . 105

6.7 A Criterion for the Specular Re�ection of GR Waves from Superconducting Films . 108

6.8 The Specular Re�ection of GR Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 The Negligibility of Single-Bounce Transduction . . . . . . . . . . . . . . . . . . . . . 126

6.10 Conservation of Energy in the Re�ection Process . . . . . . . . . . . . . . . . . . . . 134

6.11 Experimental and Theoretical Implications . . . . . . . . . . . . . . . . . . . . . . . 140

6.12 Appendix 6A: The Magnetic and Kinetic Inductances of a Thin Metallic Film . . . . 145

6.13 Appendix 6B: The Kinetic Inductance Length Scale in a Collisionless Plasma Model 147

6.14 Appendix 6C: Impedance and Scattering Cross-Section . . . . . . . . . . . . . . . . . 150

7 Gravitationally-Induced Charge Separation in Finite Superconductors 154

7.1 Charge Separation During Free Fall in the Earth�s Tidal Gravitational Field . . . . . 154

7.2 Experimental Detection of Charge Separation in the Earth�s Tidal Gravitational Field 160

7.3 Charge Separation Induced by External Source Masses . . . . . . . . . . . . . . . . . 161

7.4 Beyond First Order: Exploring the Zero-Momentum Approximation . . . . . . . . . 168

x



7.5 Experimental Detection of Charge Separation Induced by External Source Masses . 172

7.6 Experimental Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Gravitational Wave Transducer Experiment 176

8.1 Brief Outline of Proposed Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.2 Levitation of Gravitational Wave Scatterers . . . . . . . . . . . . . . . . . . . . . . . 179

8.2.1 Electrostatic Levitation Using a Charged Ring, and Extending Earnshaw�s

Theorem to Include Neutral, Polarizable Particles . . . . . . . . . . . . . . . 181

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Calculation of the Electric Potential and Field of a Charged Ring . . . . . . . 183

Earnshaw�s Theorem Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Charged Particle Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Adding a Uniform Gravitational Field Such as the Earth�s, in the Case of a

Charged Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Generalization to the Case of a Neutral, Polarizable Particle . . . . . . . . . . 191

Adding a Uniform Gravitational Field Such as the Earth�s, in the Case of a

Neutral, Polarizable Object . . . . . . . . . . . . . . . . . . . . . . . 194

The Electric Field Distributions of a Charged Ring and a Focused Laser Beam 195

8.2.2 Ways to Evade Earnshaw�s Theorem . . . . . . . . . . . . . . . . . . . . . . . 196

Magnetostatic Levitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9 Conclusions 201

References 201

xi



List of Figures

1 Radial converging geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 A point mass and a rigid ring undergoing free fall in the inhomogeneous gravitational

�eld of a point object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Quotient of sine integrals as a function of principal quantum number n . . . . . . . . 40

4 A system of test masses undergoing free fall through the rabbit hole . . . . . . . . . 60

5 Spatial diagram of freely-falling test masses within the rabbit hole . . . . . . . . . . 65

6 Dimensionless relationships between gravitational acceleration and potential and the

distance from the center of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Snapshot of tidal forces from high-frequency gravitational radiation acting on a thin

superconducting sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Interaction between electromagnetic radiation and a thin conducting �lm . . . . . . 93

9 Point charge distribution model in the charge separation experiment . . . . . . . . . 156

10 Converging geodesics in tidal gravitational �elds . . . . . . . . . . . . . . . . . . . . 158

11 Drawing of the dual-pendulum system used in the charge separation experiment . . 161

12 Tidal gravitational forces acting on the dual-pendulum system in the charge separa-

tion experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

13 Free body diagram of a single pendulum acted upon by tidal gravitational forces . . 164

14 Electrically-polarized superconducting pendula . . . . . . . . . . . . . . . . . . . . . 165

15 Plot of complex order parameters for semi-in�nite superconductors, and an approxi-

mation for a �nite superconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

16 Experimental setup for the charge separation experiment . . . . . . . . . . . . . . . 172

17 Charge vs. time in the charge separation experiment. . . . . . . . . . . . . . . . . . . 173

18 Electric �eld of a uniformly charged ring . . . . . . . . . . . . . . . . . . . . . . . . . 181

19 Comparison of the electric �elds of a charged ring and a focused laser beam . . . . . 195

xii



20 A thin, current-carrying ring creates a magnetic �eld at an arbitrary �eld point given

by the Biot-Savart law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

21 Contour plot of potential energy density in a DC homogeneous gravitational �eld and

a inhomogeneous magnetostatic �eld for perfect diamagnets . . . . . . . . . . . . . . 199

xiii



List of Tables

1 Energy shifts for various wavefunction states . . . . . . . . . . . . . . . . . . . . . . 78

2 Charge and voltage potential as a function of length for charged sheet model . . . . 155

3 Charge and voltage potential as a function of length for point-charge model . . . . . 157

xiv



1 Acknowledgements

First and foremost, I thank my mentor and friend Dr. Raymond Chiao for his support as my advisor

and committee chair. I am forever indebted to him for his guidance and encouragement over the

years, in research and on life in general.

I also thank our collaborator Dr. Kirk Wegter-McNelly of Boston University for his invaluable

insights and contributions. Drs. Chiao and Wegter-McNelly co-authored a portion of the material

presented here.

I thank my committee members Dr. Boaz Ilan, Dr. Arnold Kim, Dr. Kevin Mitchell, and Dr.

Jay Sharping for their advice and guidance on this e¤ort, as well as throughout my graduate career.

My sincere appreciation goes to Dr. Michael Sprague for his in�uence that initially brought me to

the applied mathematics program as a pioneering student. In addition, I also thank Dr. Mitchell,

Dr. Bruce Birkett, Dr. Christopher Viney, Dr. Maria Pallavicini, Tammy Johnson, Nicholetta

Sarnsen, and Marna Cooper in this regard.

I also thank Dr. Mayya Tokman, Dr. Francois Blanchette, and Dr. Roland Winston for teaching

me innumerable helpful concepts in math and physics, many of them used in this work.

I thank my fellow student researchers, especially Luis Martinez, for his help in the lab on the

charge separation experiments as well as his keen ability to interpret our results better than any

of us, also Bong-Soo Kang, Philip Jensen, Spencer DeSanto, and Jolie McLane. I thank our local

collaborator Dr. Michael Scheibner for his theoretical and �nancial contributions to the charge

separation experiments. The idea for the basic design of the experiment described in Section 7.5

was his.

I appreciate the extensive assistance I received on both theory and practical matters from faculty

and sta¤ at the University of California, Berkeley, namely Walt Fitelson, Richard Packard, Dick

Plambeck, Ken Tatebe, Paul Thompson, and Ed Wishnow. The expertise they shared with me

made the experimental process much more streamlined.

I thank Sir Roger Penrose of Oxford University, Dr. Carlton Caves of the University of New

15



Mexico, and Dr. Douglas Singleton of California State University, Fresno, for giving me a personal

audience, and for their valuable input on my research.

In loving memory of Robert Minter Sr., Albert Fidalgo Jr., and Bill Rocha. While they cannot

be here to share this with me, I know that they are forever here in spirit.

Last but not least, I thank my family and friends for their support and encouragement. More

than words can express, I appreciate their understanding and patience in regards to the fact that

over much of my graduate career, my presence in their lives was scarce at best. I promise that will

change now.

Some of the material presented in Section 5 is from a manuscript being prepared for publication,

co-authored by Dr. Raymond Chiao and Dr. Kirk Wegter-McNelly. The dissertation author is the

�rst author of this manuscript.

Section 6, in its entirety, is presented as it is published in Physica E [1], co-authored by Drs.

Chiao and Wegter-McNelly.

Some of the material presented in Section 7.1 is from a publication in the American Institute

of Physics Conference Proceedings, from the International Conference on Numerical Analysis and

Applied Mathematics (ICNAAM), Crete, Greece, 2009 [2], co-authored by Drs. Chiao and Wegter-

McNelly. The dissertation author is the �rst author of this publication.

Section 8.1.1, in its entirety, is presented as it is published in Laser Physics [3], co-authored by

Dr. Chiao. The dissertation author is the �rst author of this publication.

16



2 Curriculum Vitae

Stephen J. Minter

Ph.D. candidate, Graduate Student Representative, Applied Mathematics

University of California, Merced, Department of Natural Sciences

5200 N. Lake Rd.

Merced, CA 95344

Advisor: Dr. Raymond Chiao, Depts. of Natural Sciences and Engineering

sminter2@ucmerced.edu

EDUCATION

Ph.D. Candidacy, Applied Mathematics, University of California, Merced, 2008.

BS, Physics, with a minor in mathematics, California State University, Stanislaus, 2005.

AS, Physics, Modesto Junior College, 2003.

AA, Political Science, Modesto Junior College, 1999.

PUBLICATIONS

� Minter, S.J., K. Wegter-McNelly, R.Y. Chiao. Charge Separation Within Superconductors in

the Presence of Tidal Gravitational Fields. AIP Conf. Proc. 1168, 1084 (2009).

� Minter, S.J., K. Wetger-McNelly, and R.Y. Chiao. Do Mirrors for Gravitational Radiation

Exist? Physica E 42, 234 (2010).

17



� Minter, S.J. and R.Y. Chiao. Can a Charged Ring Levitate a Neutral, Polarizable Object?

Can Earnshaw�s Theorem be Extended to Such Objects? Laser Physics 17 (7), 942, (2007).

� Minter, S.J. and R.Y. Chiao. Multiple-Equilibria Traps for Diamagnetic Objects. In prepa-

ration.

� Minter, S.J., R.Y.Chiao, K.Wegter-McNelly. Quantum Incompressibility of a Hydrogen Atom

in a Circular Rydberg State during Free Fall in Tidal Gravitational Fields. In preparation.

RESEARCH EXPERIENCE:

Laboratory Manager, Senior Research Assistant, January 2006 to present.

PI: Dr. Raymond Chiao, UC Merced. Experimental and theoretical research in

� Production and detection of gravitational radiation

� Field coupling between gravitation and electromagnetism

� Interaction between tidal gravitational �elds and quantum-coherent matter

� New methods of particle and ion trapping

� Numerical scattering and �eld simulations

Research Assistant, 12/2004 to 5/2005. PI: Dr. Rose Zhang, CSU Stanislaus. Theoretical

and experimental research in Type II superconductivity.

Research Assistant, 9/2005 to 12/2005. PI: Dr. Susan Mokhtari, CSU Stanislaus. Theoret-

ical research in general relativity.

18



TEACHING EXPERIENCE:

Instructor, UC Merced, Math 24 (Linear Algebra and Di¤erential Equations)

Instructor, UC Merced, Math 22 (Advanced single-variable calculus)

Teaching Assistant, UC Merced, Math 32 (Probability and Statistics)

Teaching Assistant, UC Merced, Math 23 (Multivariable calculus)

Instructor, UC Merced, Math 21 (Beginning single-variable calculus)

Instructor, UC Merced, Phys 8 (Calculus-based Newtonian mechanics)

Teaching Assistant, CSU Stanislaus. College algebra

Teaching Assistant, CSU Stanislaus. Calculus-based electricity and magnetism

Teaching Assistant, CSU Stanislaus. Algebra-based Newtonian mechanics

Teaching Assistant, CSU Stanislaus. Algebra-based electricity and magnetism

AVID Tutor (volunteer), Escalon High School. In-class assistance in multiple subjects to

high school students at all levels.

Math Doctor (volunteer), Drexel University, Philadelphia, PA. Online assistance in all sci-

ences and mathematics at all levels to all ages.

19



AWARDS, HONORS, AND PRESENTATIONS:

Recipient of Legacy Award, University of California, Merced, 2010.

Recipient of President�s Dissertation Year Fellowship, University of California O¢ ce of the Pres-

ident, Academic Year 2009-2010.

Invited Colloquia:

April 2010, University of New Mexico. �Quantum Incompressibility of the Superconducting

Electron Wavefunction in the Presence of Tidal Gravitational Fields�

March 2010, California State University, Fresno. �Charge Separation Within Supercon-

ductors in the Presence of Tidal Gravitational Fields�

September 2009, University of California, Merced. �Charge Separation Within Super-

conductors in the Presence of Tidal Gravitational Fields�

April 2009, California State University, Fresno. �Do Mirrors for Gravitational Waves

Exist?�

February 2008, California State University, Fresno. �Production and Detection of Grav-

itational Radiation by Means of a Two-Body Superconducting System.�

February 2008, University of California, Merced. �Production and Detection of Gravita-

tional Radiation by Means of a Two-Body Superconducting System.�

April 2007, University of California, Merced. �Multiple-Equilibria Traps for Charged and

Neutral Dielectrics.�

20



Contributed talks:

October 2008, California Section of American Physical Society, California State

University, Dominguez Hills. �Do Mirrors for Gravitational Radiation Exist?�

March 2008, Paci�c Coast Gravity Meeting, UC Santa Barbara. �Production and

Detection of Gravitational Radiation by Means of a Two-Body Superconducting System.�

October 2007, California Section of American Physical Society, Lawrence Berkeley

National Laboratory. �Production and Detection of Gravitational Radiation by Means of a Two-

Body Superconducting System.�Awarded �rst-place Margaret Burbidge award for best

experimental research talk by a graduate student.

Posters:

April 2009, University of California, Merced. �Laboratory-Scale Superconducting Mirrors for

Gravitational Microwaves.�

March 2008, University of California, Merced. �Production and Detection of Gravitational Ra-

diation by Means of a Two-Body Superconducting System.�

March 2007, University of California, Merced. �At the Interface of Quantum Mechanics and

General Relativity.�

PROFESSIONAL SOCIETIES:

American Physical Society, since 2006.

American Institute of Physics, since 2004.

21



3 Abstract

The quantum mechanical wavefunction of a freely falling hydrogen atom will remain unchanged

to �rst order in the presence of su¢ ciently weak tidal gravitational �elds, giving rise to a form

of incompressibility not seen in classical systems. The fact that the electron is in a bound state

and that only discrete energy level transitions can occur causes the atom to behave di¤erently than

a classical object in an inhomogeneous gravitational �eld under certain circumstances. A time-

dependent energy shift that is overlooked in a widely-used gauge choice will be explored, and shown

to be a real physical e¤ect through gauge invariance. Quantum incompressibility of the wavefunction

governing the electron super�uid of a Type-I superconductor will also lead to non-classical behavior

in the presence of tidal gravitational �elds, via coupling between gravitational and electromagnetic

�elds. Theoretical and experimental implications will be discussed.
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4 Introduction

The notion of the incompressibility of a quantum-mechanical wavefunction was introduced by Laugh-

lin [4] in connection with the fractional quantum Hall e¤ect. Here, the mathematical formalism that

leads to wavefunction incompressibility is discussed in detail. Multiple theoretical and experimen-

tal implications of the ensuing relative motion between classical objects and quantum-mechanically

coherent systems in the presence of inhomogeneous, tidal gravitational �elds are explored.

This work begins in Section 5, where a tidal gravitational �eld is treated as a perturbation to the

energy levels of a hydrogen atom. A natural �quantum of size�exists for the orbit of an electron in

a hydrogen atom, due to the quantization of nuclear charge, whereas no �quantum of size�exists for

classical objects. Since the orbital radius of the electron can only take on discrete values, a quantum

form of rigidity can arise in this system between Bohr�s �quantum jumps.�This will cause the atom

to behave di¤erently than a point-like object during free fall in inhomogeneous, tidal gravitational

�elds. This problem has been previously considered, but only as measured by the local frame of

the center of mass of the hydrogen atom, resulting in a time-independent shift of the energy states

of the electron wavefunction. A novel result is obtained when global measurements are made from

the frame of a distant inertial observer, namely that a time-dependent energy shift arises due to the

e¤ects of the curvature of space.

The behavior of a hydrogen atom in the presence of a weak tidal gravitational �eld is relevant to

the development of a uni�ed gravito-electrodynamical theory for weak, but quantized, gravitational

and electromagnetic �elds interacting with non-relativistic quantum mechanical matter. Such a

theory would fall short of the ultimate goal of unifying all known forces of nature into a �theory

of everything,�but it would nonetheless be a very useful theory to have in order to compare with

experiments. Here, a need for such a theory is discussed by solving a simple hydrogen-atom problem

that reveals the �quantum incompressibility�of a spatially-extended quantum object in the presence

of an inhomogeneous gravitational �eld. In particular, the response of a hydrogen atom to the tidal

gravitational �eld of the Earth is considered. Using �rst-order perturbation theory, it is found
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that under certain circumstances, an incompressible, extended quantum mechanical system such as

this atom will behave di¤erently than both point-like and extended classical objects in the Earth�s

inhomogeneous gravitational �eld. The main objective of this section is to demonstrate the existence

of a time-dependent shift in the hydrogen atom energy spectrum due to the curvature of space when

measurements are made by a distant inertial observer in asymptotically �at spacetime.

Section 6, as mentioned, is presented as published in Physica E, apart from modi�cations to

the format, and the equation, �gure, and reference numbers, for the purposes of continuity within

this dissertation. This section addresses the possibility of re�ection of high-frequency gravitational

radiation from the surface of a thin superconducting �lm. The electron super�uid of a Type-I

superconductor is also governed by a quantum-mechanical wavefunction which also exhibits a form

of incompressibility. Detailed analysis is performed showing the reaction of a superconductor to

high- and low-frequency gravitational perturbations, leading to multiple experimental possibilities.

Sections 7 and 8 are analyses of two of those experimental possibilities, including a brief de-

scription of some preliminary data. Section 7 addresses electrostatic charge separation within a

bulk superconductor in the presence of a low-frequency perturbing gravitational �eld. Section 8.1

brie�y addresses the possibility of conversion between electromagnetic wave power and gravitational

wave power by means of two sets of superconducting systems, while Section 8.2 deals with practical,

experimental concepts that are helpful to the implementation of the experiment that is described

in Section 8.1. Speci�cally, stable levitation of two spatially-separated superconducting samples is

considered. Some of these experiments have been performed, and an experiment on the transduc-

tion between electromagnetic and gravitational radiation (�rst discussed in Section 6) is on-going

and fully funded.
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5 Quantum Incompressibility of the Hydrogen Atom Elec-

tron Wavefunction

5.1 Introduction

The nature of the quantum mechanical wavefunction of the electron in a hydrogen atom will cause

it to behave di¤erently than any classical matter in certain types of inhomogeneous gravitational

�elds. A time-independent shift of the atom�s energy spectrum has been studied extensively by

many, several of them mentioned in the main body of this section, but here it is proposed that there

is also a novel time-dependent energy shift when the atom is viewed by a distant inertial observer

in asymptotically �at spacetime.

Section 5.2 brie�y introduces the quantum mechanical wavefunction of the hydrogen atom, and

de�nes certain parameters and variables.

Section 5.3 analyzes the free-fall behavior of classical matter in tidal gravitational �elds. This

section was written to point out the fact that classical point masses behave di¤erently than classical

extended masses in tidal gravitational �elds, though no violation of the Equivalence Principle occurs.

An explicit derivation of the interaction Hamiltonian operator that leads to a time-independent

shift in the atom�s energy spectrum due to the curvature of space is performed in Section 5.4, which

has been previously considered. This operator arises from the potential energy term in the full

Hamiltonian. In Section 5.5, it is argued that there is a time-dependent energy shift that arises

from an interaction Hamiltonian that has not been previously considered. This operator arises

from the kinetic energy term in the full Hamiltonian. It is suggested that this time-dependent

energy shift is generally overlooked when performing an allowed local gauge transformation which

sets the contributions of the vector potentials to the kinetic energy to be identically zero everywhere.

However, this does not take into account holonomic e¤ects seen in global measurements. An analogy

is made, in that there are experimentally-veri�ed holonomic e¤ects in electromagnetism which arise

in the same form as the interaction Hamiltonian that leads to the time-dependent energy shift due
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to the curvature of space. Gauge invariance of these time-dependent energy shifts are shown in

Section 5.6.

While exploring this gauge invariance, it is shown that the Riemann curvature tensor one often

encounters in general relativity has a di¤erent form when free fall occurs outside of a spherically-

symmetric object, as compared to free fall through a spherically-symmetric object, such as a hole dug

through the diameter of the Earth. This serves as motivation to evaluate the energy shift problem

when the atom is freely falling through the Earth, as opposed to freely falling above the Earth�s

surface. It is found that the interaction Hamiltonian terms have di¤erent forms in each case. For

example, though there are additional di¤erences, the kinetic energy shift above the surface of the

Earth is positive-de�nite for all quantum states of the hydrogen atom, whereas this energy shift is

negative-de�nite for all states when free fall occurs within the Earth.

Section 5.7 directly compares the free fall behavior of the hydrogen atom to that of classical

objects, both point-like and extended.

Section 5.8 discusses a discontinuity in the gravitational potential that occurs at the surface

of the Earth in the expressions for the potential within the Earth, and above the surface. A

gravitational potential that is valid in both cases is derived. It is noted that the previous results

remain una¤ected, since physical e¤ects arise only from changes in potential, not absolute potential.

Section 5.9 contains concluding remarks.
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5.2 Wavefunctions and Circular States of the Hydrogen Atom

A relatively simple quantum-coherent system is the hydrogen atom. The wavefunction for a hydro-

gen atom is uniquely de�ned by three quantum numbers: n, the principal quantum number; l, the

angular momentum quantum number; and m`, the magnetic quantum number. When n � 1, the

system is commonly called a �Rydberg atom.�

The normalized wavefunction of the hydrogen atom is given in spherical polar coordinates by [5]

 nlm`
(r; �; �) = �

s�
2

na0

�3
(n� l � 1)!
2n (n+ l)!

exp

�
� r

na0

��
2r

na0

�l
L2l+1n+l

�
2r

na0

�
Ylm (�; �) ; (1)

where a0 is the Bohr radius, L
2l+1
n+l are associated Laguerre polynomials of degree n + l and order

2l+1, and Ylm are spherical harmonics. Particular attention will be focused on �circular states�of

the Rydberg atom, where l and jmj are equal to their maximum values of n� 1. These states are

called �circular� due to the fact that the electron probability distribution is strongly peaked in a

ring-like shape, and thus Rydberg atoms in these states make good examples of quantum-coherent

�rings�when n is large. The unnormalized wavefunction for circular states is given by [6]

 n;n�1;n�1 (r; �; �) = [r sin � exp (i�)]
n�1

exp

�
� r

na0

�
: (2)

The wavefunction for the center of mass of the system is a plane-wave state given by

 0(rcm ) = exp(ikcm � rcm ) , (3)

where kcm is the wave vector, and rcm = hxcm ; ycm ; zcm i is the position, of the center of mass. Since

the center of mass of atom is undergoing free fall in Earth�s gravity,

kcm = �
Mge¤t

~
ez = kcmez, (4)
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where ge¤ is the e¤ective acceleration due to Earth�s gravity, de�ned later in (15), ez is the unit

vector parallel to the local vertical axis, and ~ is the reduced Planck�s constant.

The total wavefunction for the system is given by the product of the wavefunctions in (2) and

(3), and is thus

	n;n�1;n�1 =  n;n�1;n�1 
0 = (r sin �ei�)n�1 exp

�
ikcmzcm �

r

na0

�
. (5)

The associated probability density of the electron has the form of a strongly peaked, ring-like

distribution lying in the (x; y) plane with a maximum located at a radius of

an = n2
~2

mee2
= n2a0 , (6)

where a0 is the Bohr radius, and me and e are the mass and charge of the electron, respectively.

Such an atom, unlike a freely falling rubber ring, will resist any change in its size during free fall

until it can make a discontinuous quantum jump out of its initial state into a di¤erent quantum

state. In this sense, a hydrogen atom in a circular Rydberg state is �quantum incompressible�in its

response to tidal gravitational forces �apart from possible quantum transitions. However, as it will

be shown that appreciable quantum transition probability amplitudes are only present for highly

curved space and/or values of n that preclude the atom from being stable against ionizing e¤ects,

such transitions are beyond the scope of this work, and only the gravitational �eld of the Earth and

realistic values of n will be considered.
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5.3 Free Fall of Classical Matter: Point Masses and Extended Objects in

Tidal Gravitational Fields

Consider the free fall of two nearby, point-like objects dropped from the same height above the

surface of the Earth (see Figure 1). These two objects, whose trajectories radially converge towards

the center of the Earth, each apparently undergo a small horizontal component of acceleration g0

of the radial acceleration g due to the Earth�s mass, according to a distant inertial observer, where

g0i =
g
RE
xi for i = 1; 2. These horizontal components of acceleration are equivalent to a tidal

gravitational force that, in a Newtonian picture, causes the two objects to converge toward each

other during free fall.

Figure 1: Two nearby, freely falling, point-like classical objects dropped from the same height above
the Earth�s surface follow converging geodesics that are inclined at a slight angle with respect to
the vertical plumb line equidistant between them. The two objects, whose trajectories radially
converge towards the center of the Earth, each apparently undergo a small horizontal component of
acceleration g0 of the radial acceleration g due to the Earth�s mass, according to a distant inertial
observer. These horizontal components of acceleration are equivalent to a tidal gravitational force
that, in a Newtonian picture, causes the two objects to converge toward each other during free fall.

Now replace these two objects by a ring made of classical, compressible matter, such as a rubber

ring. Let this ring be oriented in a horizontal plane when it is initially dropped. Over short time

scales, the ring will undergo continuous compression into a ring of smaller radius during free fall

under the adiabatic, slowly time-varying, squeezing action of the tidal gravitational �eld of the

Earth, whose action is isotropic in the two transverse directions perpendicular to the local vertical

plumb line indicated in Figure 1. Since the ring continuously changes its dimensions as it falls, no
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natural �quantum of size�exists for such a ring.

Now consider two classical objects, one point-like mass, and one spatially-extended mass, in the

presence of the inhomogeneous, tidal gravitational �eld of a point-like object with mass M 0 (e.g.,

a point-like Earth). Both objects are released from rest at a vertical distance h from mass M 0.

Once released, the objects are allowed to undergo free fall. One object consists of an in�nitely

rigid ring of radius a and mass mext : The other is a point-like test mass mpt which is located at

the center of mass of the ring, and is free to fall independently. Both the ring and the test mass

are simultaneously released from rest into free fall at time t = 0. Let M 0 o mext ;mpt so that the

position of mass M 0 stays �xed. See Figure 2.

Figure 2: A point mass mpt and a rigid ring of mass mext undergoing free fall in the inhomogeneous
gravitational �eld of a point object with much greater mass M 0:

The total energy of the freely falling, point-like test particle, with mass mpt ; is a conserved

quantity equal to its initial potential energy, and is thus given by

Ept = �
GM 0mpt

h
; (7)

where G is Newton�s gravitational constant. The gravitational potential energy of the point-like

test mass m is given by

Vpt = �
GM 0mpt

h� y ; (8)

where y is the distance fallen.
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A di¤erential volume element dm of the rigid ring has a total energy

dEext = �
GM 0dmp
h2 + a2

= �GM
0�`a d�p
h2 + a2

; (9)

where �` =
me x t
2�a is the uniform, linear mass density of the thin ring, and d� is a di¤erential angle

element along the ring. Substituting this expression for the mass density and integrating, the

conserved total energy of the ring is given by

Eext = �
GM 0mextp
h2 + a2

: (10)

Similarly, the potential energy of the ring is given by

Vext = �
GM 0mextp
(h� y)2 + a2

: (11)

By the principle of conservation of energy, the total energy of both objects satis�es E = T + V ,

where T is the kinetic energy, and thus the kinetic energies of each object are

Tpt =
GM 0mpt

h

Y

1� Y (12)

Text =
GM 0mext

h

"
1p

(1� Y )2 +D2
� 1p

1 +D2

#
; (13)

where Y � y=h is the dimensionless free-fall distance, and D � a=h is the dimensionless radius of

the rigid ring. Note that Text ! Tpt as D ! 0, as would be expected. Although this non-geodesic

e¤ect may be too small to measure using realistic dimensions for Earth-based experiments (since D

would be small due to the large radius of the Earth), (12) and (13) can be used, via T = 1
2mv

2, to

show that everywhere on the open interval Y = (0; 1); the velocity of the ring is less than the velocity

of the test mass, showing that an extended, rigid system will behave di¤erently than a point-like

object during free fall in the inhomogeneous, tidal gravitational �eld of point mass M 0.

The gravitational acceleration of the extended object over short free fall distances, where the
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acceleration is approximately constant, can be derived from (10) by noting that

Eext = �
GM 0mextp
h2 + a2

� �GM
0mext

R
= �mextgextR; (14)

where gext is an e¤ective gravitational acceleration given by

gext =
GM 0

R2
=

GM 0

h2 + a2
: (15)

For free fall in the Earth�s tidal gravitational �eld, gext di¤ers from the gravitational acceleration of

a point mass at the surface of the Earth gE = 9:8ms2 by a very small amount for realistic lengths a.

The fractional di¤erence between the two is given by

gext
gE

=
1

1 +
�

a
RE

�2 � 1� � a

RE

�2
; (16)

where RE is the Earth�s radius, when the extended object is dropped near the Earth�s surface.

Note that the subscript in gE is present to remind the reader that this value is the magnitude of

gravitational acceleration at the surface of the Earth, which is a constant that does not vary with

distance from the center of Earth, reserving the symbol g for the magnitude of the gravitational

acceleration that is inversely proportional to that distance when free fall occurs above the Earth�s

surface.

Initially, it seems that this result challenges a major aspect of the equivalence principle (EP),

namely that all objects in free fall undergo the same acceleration. However, this is not the case,

since the EP is applicable only to point-like objects in free fall. The EP does not apply, except in

approximation, to the spatially extended ring in an inhomogeneous gravitational �eld.

Since the two objects have di¤erent velocities in a tidal gravitational �eld, the question can

be raised, what if the two objects are bound together, so that their velocities must be the same?

Consider a single object that consists of the extended ring and the point-like mass that are rigidly
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bound together during free fall. The total kinetic energy of this system is given by the sum of the

individual kinetic energies de�ned in (12) and (13), and thus

Ttot = Tpt + Text =
GM 0

h

24mpt

�
Y

1� Y

�
+

mextq
(1� Y )2 +D2

� mextp
1 +D2

35 = 1

2
mtotv

2
tot ; (17)

where mtot = mpt +mext , and v is the velocity of the entire system. The velocity satis�es

v2tot =
2GM 0

h

8<:u
�

Y

1� Y

�
+ (1� u)

24 1q
(1� Y )2 +D2

� 1p
1 +D2

359=; ; (18)

where u is the dimensionless ratio satisfying

u � mpt

mtot
= 1� mext

mtot
: (19)

Therefore, the velocity of the system is dependent on the masses of the ring and the point mass. As

one would expect, vtot approaches the velocity of the point mass when u ! 1 and that of the ring

as u! 0.

Again, a mass-dependent free-fall velocity seems to be a contradiction to the EP. However, again,

the EP does not apply to this system because the point mass and the ring are rigidly bound, and

therefore are not individually free particles. The EP can only be applied rigorously to freely-falling

point masses. The rigid binding of the two masses precludes them from falling as free particles.
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5.4 Free Fall of the Hydrogen Atom through Vacuum in Tidal Gravita-

tional Fields

The Hamiltonian operator for the hydrogen atom in a perturbing �eld is given by

H = H0 +H1; (20)

where H0 is the unperturbed Hamiltonian, and H1 is the interaction Hamiltonian due to the �eld

perturbation.

An interaction Hamiltonian for the hydrogen atom in a gravitational �eld, moving with non-

relativistic velocity, has been previously considered by Parker [7] and shown to be

HP =
1

2
meR0l0mx

lxm (21)

where me is the mass of the electron, R0l0m are components of the Riemann curvature tensor, and xl

and xm are components of the position operator of the electron. Equation (21) is obtained by taking

the nonrelativistic limit of the Dirac equation embedded into curved spacetime [8][9]. The subscript

P is used for Parker, the author of the papers referenced here, and his index notation is adopted

as well. Superscripts l and m are contravariant indices satisfying l;m = 1; 2; 3, and should not be

confused with quantum number l or mass m. The index 0 refers to the time components. Greek

indices are spacetime indices, and Latin indices are space indices only. The Einstein summation

convention is used here as well, in which repeated indices are summed over all possible values.

The physical meaning of (21) can be seen by going to the Newtonian limit of general relativity,

where [10]

Ri0j0 = �ik
@2�

@xk@xj
, (22)
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where � is the Newtonian gravitational potential that satis�es

�r� = g: (23)

Lowering the index i in (22) by means of multiplying by the metric tensor gli, one gets

Rl0j0 = gliR
i
0j0 = gli�

ik @2�

@xk@xj
= glk

@2�

@xk@xj
. (24)

For weak gravitational �elds, spacetime is almost �at, so that to a good approximation

glk � �lk = �lk (25)

where ��� = diag(�1;+1;+1;+1) is the Minkowski metric for �at spacetime. Thus one arrives at

the expression relating the Riemann curvature tensor to derivatives of the Newtonian gravitational

potential

Rl0j0 = �lk
@2�

@xk@xj
=

@2�

@xl@xj
. (26)

The covariant indices of the Riemann curvature tensor obey the following identities:

R���� = �R���� = �R���� . (27)

It therefore follows that

Rl0j0 = R0l0j . (28)

Using this identity and (26), we can rewrite (21) as follows:

HP =
1

2
meR0l0mx

lxm =
1

2
me

@2�

@xl@xm
xlxm. (29)
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Since the 3-by-3 matrix 26666664
@2�

@x1@x1
@2�

@x1@x2
@2�

@x1@x3

@2�
@x2@x1

@2�
@x2@x2

@2�
@x2@x3

@2�
@x3@x1

@2�
@x3@x2

@2�
@x3@x3

37777775 (30)

is Hermitian, one can solve for its eigenvalues and their corresponding eigenvectors, and thereby

de�ne the principal axes of the ellipsoid obtained by setting the quadratic form (29) equal to a

constant. Using a principal-axis coordinate system (x; y; z) which is centered on the center of mass

of the atom, we obtain

HP =
1

2
me

�
@2�

@x2
x2 +

@2�

@y2
y2 +

@2�

@z2
z2
�
, (31)

i.e., that the interaction Hamiltonian (21) can be cast into a principal-axis quadratic form.

By Taylor�s theorem, one can expand � around the origin, located at the center of mass of the

atom, as follows:

�(x; y; z) = �0 +

 
@�

@x

����
x=0

x+
@�

@y

����
y=0

y +
@�

@z

����
z=0

z

!
(32)

+
1

2

 
@2�

@x2

����
x=0

x2 +
@2�

@y2

����
y=0

y2 +
@2�

@z2

����
z=0

z2

!
+ ::: (33)

where �0 = �(0; 0; 0). Since there are no tidal forces at the origin,

@�

@x

����
x=0

=
@�

@y

����
y=0

=
@�

@z

����
z=0

= 0 . (34)

Furthermore, one is free to choose �0 = 0.

Thus, one can see from (31) that the physical signi�cance of HP is that

HP = me� (x; y; z) : (35)

In other words, Parker�s interaction Hamiltonian (21) has the physical signi�cance of being the

tidal gravitational potential energy operator, viewed as a perturbation on the electronic wavefunction

36



of the hydrogen atom in the principal-axis coordinate system centered on the center of mass of the

atom.

If one further chooses the z axis to be the vertical axis of the freely falling system, the potential

� must then be rotationally symmetric in the (x; y) plane, so that expanding the potential around

the origin by Taylor�s theorem implies that � must have the form

� = A
�
x2 + y2

�
+Bz2; (36)

recalling that �0 was chosen to be zero at the origin. Since the atom is falling through vacuum,

the potential must satisfy Laplace�s equation

r2� = 0: (37)

Substituting (36) into (37) yields

B = �2A; (38)

and thus

� = A
�
x2 + y2 � 2z2

�
: (39)

To determine A, one can consider the tidal forces on the electron, which satisfy

F = �mer� = �2meA hx; y;�2zi = meg
0: (40)

For su¢ ciently short free fall distances, over which the gravitational acceleration can be considered

constant, the velocity of the particle is given by

v = g0t = �2At hx; y;�2zi : (41)
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Considering speci�cally the x-component of the velocity,

vx = g0xt = �g
x

RE
t = �2Atx; (42)

and therefore

A =
g

2RE
: (43)

The full expression for the potential is thus

� =
g

2RE

�
x2 + y2 � 2z2

�
; (44)

and the interaction Hamiltonian is given by substituting this expression into (35), yielding

HP =
meg

2RE

�
x2 + y2 � 2z2

�
: (45)

When calculating the shifts to the unperturbed energy levels resulting from the expectation value

of this interaction Hamiltonian, it is convenient to express this operator in spherical coordinates by

HP =
meg

2RE

�
r2
�
3 sin2 � � 2

��
= �4

r
�

5

meg

2RE
Y 02 ; (46)

where Y 02 is the second degree, zero-order spherical harmonic. Thus, this interaction Hamiltonian

represents a rank-2 angular momentum operator, since its angular dependence is quadrupolar [11].

One immediate consequence is that, by the Wigner-Eckart theorem, there will be no e¤ect on a

hydrogen atom in a state with zero angular momentum (i.e. where l = 0), to �rst order, through

this interaction Hamiltonian.

The energy shift of the atom in a highly-excited, stretched Rydberg state due to this interaction

Hamiltonian is given by

�EP =
h	jHP j	i
h	j	i : (47)

38



Beginning with the normalizing element,

h	j	i =

Z 2�

0

Z �

0

Z 1

0

r2n exp

�
� 2r

na0

�
sin2n�1 � dr d� d� (48)

= 2� (2n)!
�na0
2

�2n+1
S(2n� 1);

where

S(�) �
Z �

0

sin� �d�: (49)

Evaluating the expectation value for the Parker interaction Hamiltonian yields

h	jHP j	i =
meg

2RE
2� (2n+ 2)!

�na0
2

�2n+3
[3S(2n+ 1)� 2S(2n� 1)] ; (50)

and thus the energy shift is equal to

�EP =
meg

2RE
(2n+ 2) (2n+ 1)

�na0
2

�2
[3I (2n+ 1; 2n� 1)� 2] ; (51)

where

I(�; �) � S (�)

S (�)
=

R �
0
sin� �d�R �

0
sin� �d�

: (52)

A plot of this integral quotient appearing in (51) as a function of n is shown in Figure 3, indicating

that I approaches unity as n becomes large. The integrals were calculated numerically using an

adaptive Simpson quadrature method with an error tolerance of 10-6 .

Thus, for large values of principal quantum number n,

�EP �
meg

2RE

�
n2a0

�2
=
meg

2RE
a2n: (53)

This expression de�nes a shift in the energy spectrum of the hydrogen due to the curvature of space.

In light of the fact that the energy shift grows as n4, one might ask, for what values of n does

this energy shift become comparable to the unperturbed energy level spacings? Recall that the
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Figure 3: Quotient of sine integrals that appears in (51) as a function of n.

energy of the nth state is given by

En =
E0
n2
; (54)

where E0 = �13.6 eV, the energy of the ground state. Thus, for the energy shift to be comparable

to the spacing,

En +�EP � En+1: (55)

For the gravitational �eld of Earth, this occurs when n �105 . Rydberg atoms with this excitation

energy would be extremely short-lived [12], not due to spontaneous emission, but to ionizing e¤ects.

Atoms in these energy states have not been prepared in a laboratory setting. Note that the atomic

radius would be on the order of tens of centimeters.

Alternatively, one could ask, for realistic values of n, what value of g
R is required for the energy

shift to become comparable to the unperturbed level spacing? To satisfy (55), gR would have to be

on the order of 1012 Hz2 for n �103 . Note that gravitational �elds near a black hole are required,

since this value is on the order of 10-5 Hz2 on Earth, 10-1 Hz2 for a white dwarf, and 109 Hz2 for a

neutron star. Furthermore, for this curvature, the gravitational �eld may become too strong to be

considered a perturbing �eld, which will be discussed in more detail in the following sections.
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Up to this point, the analysis matches that which was previously considered extensively. See, for

example, [7][8][9][13][14]. While no claims are made here that the energy shift in (53) is incorrect, it

does not constitute a complete analysis for the energy shifts of the circular Rydberg atom in curved

spacetime. In Section 5.5.2, it will be shown that an additional, time-dependent energy shift arises

when one considers the interaction Hamiltonian that arises from the DeWitt minimal coupling rule.
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5.5 The DeWitt Interaction Hamiltonian Operator

Generally, in nonrelativistic quantum mechanics when weak electromagnetic and gravitational �elds

are present, one must make the substitution according to DeWitt�s minimal coupling rule [15]

p! p� qA�mh , (56)

where p is the canonical momentum operator, q and m are the electrical charge and mass of the

object being considered, respectively, andA and h are the electromagnetic and DeWitt gravitational

vector potentials, respectively. Applying this minimal coupling rule to the Hamiltonian for a freely

falling hydrogen atom in presence of weak electromagnetic and gravitational �elds yields

H =
1

2mp
(pp � qpAp �mphp)

2
+

1

2me
(pe � qeAe �mehe)

2
+ V (rp; re) ; (57)

where mp and me are the proton and electron masses, respectively, Ap and Ae are the electromag-

netic vector potentials evaluated at the position coordinates of the proton and electron, respectively,

hp and he are the corresponding gravitational vector potentials, and V is the potential energy. The

coordinate system being used here is that of the distant inertial observer.

Expanding the Hamiltonian in (57), yields

H =

"
p2p
2mp

+
p2e
2me

+ V (rp; re)

#
(58)

+

 
q2p
2mp

Ap �Ap +
1

2
mphp � hp �

qp
mp
Ap � pp �

1

2
fhp;ppg+ qpAp � hp

!

+

�
q2e
2me

Ae �Ae +
1

2
mehe � he �

qe
me
Ae � pe �

1

2
fhe;peg+ qeAe � he

�
;

where the commutation relation [p;A] = 0 was used, since the electromagnetic vector potential is

solenoidal, and fh;pg = h � p+p � h is the anti-commutator. It is desirable to transform to relative

and center-of-mass coordinate systems. Since an analytic expression for the DeWitt Hamiltonian
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corresponding to an object in the presence of electromagnetic and gravitational �elds does not exist

in the transformed coordinate system [13][16], the transformation will be applied only to the terms

in the square brackets in (58), treating the additional terms in the parentheses as perturbations to

the system. This can be justi�ed by comparing the energy shifts one calculates for these terms to

the much larger Coulomb potential. Applying the coordinate transformation

rcm =
mprp +mere
mp +me

(59)

r = jre � rpj (60)

only to the terms in the square brackets of the above Hamiltonian yields

H �
�
p2cm
2M

+
p2

2�
+ V (r)

�
(61)

+

 
q2p
2mp

Ap �Ap +
1

2
mphp � hp �

qp
mp
Ap � pp �

1

2
fhp;ppg+ qpAp � hp

!

+

�
q2e
2me

Ae �Ae +
1

2
mehe � he �

qe
me
Ae � pe �

1

2
fhe;peg+ qeAe � he

�
;

where pcm and p are the magnitudes of the canonical momentum of the center of mass of the

atom and the canonical relative momentum, respectively, M is the total mass of the atom, and

� = mpme=(mp +me) is the reduced mass of the electron.
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5.5.1 Quantum Incompressibility of the Rydberg Atom in a Weak Magnetic Field

In the DeWitt minimal coupling rule de�ned in (56), it is clear that the gravitational vector potential

h enters the kinetic momentum operator in a similar manner to the electromagnetic vector potential

A. Analysis of the energy shifts that arise from considering non-zero external electromagnetic

vector potentials A yields experimentally-veri�ed results, which is shown below. The intention here

is to demonstrate the necessity of a non-zero energy shift arising from the DeWitt Hamiltonian by

considering an electromagnetic analogy that yields experimentally-veri�ed results.

Thus, before examining the gravitational case, consider the e¤ect of a homogeneous, DC magnetic

�eld upon a system with Hamiltonian given by (61), in the situation that h = 0 but A 6= 0.

In the symmetric gauge, the electromagnetic vector potentials for the proton and electron are

given by

Ap =
1

2
B� rp= �

1

2
B hyp;�xp; 0i ; (62)

and

Ae =
1

2
B� re= �

1

2
B hye;�xe; 0i ; (63)

in the Cartesian coordinate system, respectively, for B = Bez, where is the unit vector parallel to

the local vertical axis. As before, the energy shifts due to the presence of the perturbing �elds are

found by taking the expectation value of the corresponding interaction Hamiltonian terms.

The interaction Hamiltonian for the A �A term, commonly referred to as the �Landau diamag-

netism term�[17], is given by

HA�A =
e2

2mp
Ap �Ap +

e2

2me
Ae �Ae (64)

=
e2B2

8mp
(x2p + y

2
p) +

e2B2

8me
(x2e + y

2
e)

� e2B2

8me
(x2e + y

2
e);

where the approximation has been made due to relative sizes of the proton and electron terms [18].
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The corresponding normalized matrix element is given by

h	jAe �Aej	i
h	j	i =

B2

4



	jx2e + y2e j	

�
h	j	i : (65)

Henceforth, the subscripts will be suppressed as understood. Transforming to spherical polar

coordinates and performing the integration, the matrix element that appears in the numerator on

the right hand side of (65) becomes



	jx2 + y2j	

�
=



	jr2 sin2 �j	

�
(66)

=

Z 2�

0

Z �

0

Z 1

0

r2n+2 exp

�
� 2re
na0

�
sin2n+1 � dr d� d�

= 2� (2n+ 2)!
�na0
2

�2n+3
S(2n+ 1):

Dividing this by (48), the normalized element becomes



	jx2 + y2j	

�
h	j	i = (2n+ 2) (2n+ 1)

�na0
2

�2
I(2n+ 1; 2n� 1): (67)

Thus, for large values of the principal quantum number n,



	jx2 + y2j	

�
h	j	i �

�
n2a0

�2
= a2n: (68)

The resulting energy shift thus satis�es

(�EA�A)n = hHA�Ai �
e2B2

8me
a2n; (69)

in �rst-order perturbation theory. Comparing this to the Coulomb potential, it is noted that for

su¢ ciently weak magnetic �elds and realistic values of n (where n3B � 7� 105 T ), the A �A term

can be treated as a perturbation in (61). The energy shift given by (69) causes the atom to become
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a low-�eld seeker in inhomogeneous magnetic �elds through the relationship

(F
A�A)n = �r (�EA�A)n � �

e2a2n
8me

r
�
B2
�
; (70)

where (F
A�A)n is the force on the atom in the ring-like state (2) in the presence of an inhomogeneous

magnetic �eld.

According to �rst-order perturbation theory, the result given in (69) implies that the size of the

atom does not change in the presence of an externally applied DC magnetic �eld, in the sense that

the root-mean-square transverse size of the atom, which is given by

anjrms =
q
h	n;n�1;n�1 jx2e + y2e j	n;n�1;n�1i = an; (71)

does not change with time during the application of the �eld.

For the A � p term, we start with

A � p = B

2
h�y; x; 0i � �i~

�
@

@x
;
@

@y
;
@

@z

�
= �i~B

2

�
x
@

@y
� y @

@x

�
: (72)

Converting this to spherical polar coordinates, we have

A � p = �i~B
2

@

@�
=
B

2
Lz; (73)

where Lz is the z-component of the quantum-mechanical angular momentum operator L. The

corresponding matrix element is given by

h	jA � pj	i = 1

2
~B(n� 1)

Z 2�

0

Z �

0

Z 1

0

r2n exp

�
� 2r

na0

�
sin2n�1 � drd�d�: (74)
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Evaluating the radial part of the integral analytically leads to

h	jA � pj	i = �~B(n� 1) (2n)!
�na0
2

�2n+1
S(2n� 1): (75)

Dividing the above by (48) gives

h	jA � pj	i
h	j	i =

~
2
B(n� 1); (76)

and thus the energy shift is given by

(�EA�p)n �
~
2me

qe (n� 1)B =
~
2me

qem`B; (77)

which is the linear Zeeman level-splitting term. The expression in (77) is valid for all values of

n, and the approximation arises from again neglecting the proton contribution, since its charge-to-

mass ratio is much smaller. This energy shift is signi�cantly smaller than the Coulomb potential

for realistic values of m` and B.

Since the A � p term is linear in the electromagnetic vector potential, and the A �A term is

quadratic, one must calculate the second-order perturbation term in A � p, since any contribution

from this term will be of the same order as that in (69). The full energy expression corresponding

to the A � p interaction Hamiltonian, out to second order, is given by

En � E(0)n + (�EA�p)n +
X

n0 6=n;l0;m0

jh	nlm jA � pj	n0l0m0ij2

E
(0)
n � E(0)n0

: (78)

Applying the A � p operator to the wavefunction eigenstate, one obtains

A � p j	n0l0m0i = ~B
2
m0 j	n0l0m0i ; (79)
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and thus

h	nlm jA � pj	n0l0m0i = ~B
2
m0 h	nlm j	n0l0m0 i : (80)

Since the matrix element on the right side of (80) is proportional to �nn0 ; all terms in the sum in

(78) are zero, and thus there are no contributions from second-order terms in A � p:

As with theA �A term, the result given in (77) also implies that the size of the atom is unchanged

to �rst order by the A � p interaction Hamiltonian, since the wavefunction state did not change with

the application of this operator. In fact, none of the moments of the atomic probability distribution

can change, since the wavefunction 	n;n�1;n�1 must remain unaltered in �rst-order perturbation

theory in the presence of a weak applied magnetic �eld. This will also be true when the applied

�eld varies slowly in time, as long as the characteristic frequency of its variation is su¢ ciently low

to render quantum transitions out of the initial state 	n;n�1;n�1 highly improbable. The electronic

wavefunction of the circular Rydberg atom is thus �quantum incompressible�not only in the presence

of DC magnetic �elds but also in the presence of su¢ ciently weak, and su¢ ciently slowly varying,

magnetic �elds that do not cause quantum transitions.

For the general case of external perturbations arising from changes in potential energy, such as

those that would arise from continuous variation of the nuclear charge, a corresponding continuous

variation of the size of the quantum system would be possible. However, due to the discreteness of the

charge of the nucleus and of the electron, the Coulomb potential energy of a circular Rydberg atom

governed by (61) is �xed, and cannot be continuously altered to �rst order. Continuous variation of

the size of the atom in this particular case is therefore impossible via any process which arises from

changes in an external perturbing electromagnetic �eld, and thus it is not meaningful to perform an

analysis using the quantum adiabatic theorem. The quantum adiabatic theorem is only appropriate

when dominant contributions to the Hamiltonian operator can be varied slowly and continuously,

which is not the case here.
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5.5.2 Quantum Incompressibility of the Rydberg Atom in a Weak Tidal Gravitational

Field

Now consider the case in which a weak tidal gravitational �eld is present without any accompanying

electromagnetic �eld, i.e., when A = 0 but h 6= 0, such as when a hydrogen atom in a circular

Rydberg state freely falls in the Earth�s tidal �eld in the absence of any electromagnetic �eld. As

before, the atom is initially prepared in the state given by (5). It is oriented such that its z-axis, which

goes through its center of mass, coincides with the local vertical axis of the Earth�s gravitational

�eld. The horizontal tidal gravitational �eld of the Earth experienced by the atom during free fall,

as observed in the coordinate system of a distant inertial observer, where the (x; y) plane is the local

horizontal plane, is given by

h(x; y; z; t) = v(x; y; z; t) = g0t =
gt

RE
hx;y;� 2zi , (81)

where, in accordance with Figure 1, v(x; y; z; t) is the velocity of a freely falling test particle located

at (x; y; z) and observed at time t by the distant inertial observer [1, which is Section 6 of this

work], g0 is the horizontal component of Earth�s gravitational acceleration arising from the radial

convergence of free-fall trajectories towards the center of the Earth as seen by this observer, and RE

is the radius of the Earth. Such freely falling test particles located at the origin of the spacetime

coordinate system establish the local inertial frame that is being used here. It is assumed in (81)

that the excursions of the electron from the center of mass of the atom are much smaller than RE .

The interaction Hamiltonian for the h � h terms in (61) is then given by

Hh�h =
mp

2
hp � hp +

me

2
he � he �

me

2
he � he =

meg
2t2

2R2E
(x2e + y

2
e + 4z

2) , (82)

where a similar approximation [18] to that appearing in (64) has been used. This leads to an energy

level shift of the atom in the circular Rydberg wavefunction state (5), due to the Earth�s tidal �eld
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in (81), given by

(�Eh�h)n �
meg

2t2

2R2E
h	n;n�1;n�1j r2

�
4� 3 sin2 �

�
j	n;n�1;n�1i �

meg
2t2

2R2E
a2n (83)

in �rst-order perturbation theory, where the expectation value is expressed in spherical coordinates.

This shows that the h�h term can be treated as a perturbation in (61) because the Coulomb potential

energy is much greater than the energy shift in (83) even for large values of n, when the system

undergoes free fall in the Earth�s tidal gravitational �eld. The Parker and DeWitt energy shifts in

(53) and (83), respectively, are related by

�Eh�h = 2
y

RE
�EP ; (84)

where y = 1
2gt

2 is the distance fallen. It is noted here that �EP , unlike �Eh�h, is non-zero at time

t = 0, where, for example, a laser-stimulated quantum transition occurs, and the atom is released

into free fall. The explicit time-dependence of �Eh�h can be compared to the energy shift in a

classical system consisting of two masses joined by a spring. When the system is released into free

fall, there will be a time-dependent change in the potential energy of the spring as the two masses

converge towards the center of the Earth.

Note that actual free fall is not strictly required, since the tidal gravitational �elds that cause

two massive objects to horizontally converge are present even in a system that has no local vertical

motion. Consider two horizontally-separated masses connected by a spring. Over short time scales,

when the gravitational acceleration and the distance from the center of Earth can be considered as

constant, a time-dependent shift in the spring energy will be present, which will be the same for a

freely-falling system, and a system that is placed on a �at, frictionless surface that is tangent to the

surface of the Earth.

As before, since the expectation value in (83) is the mean-square transverse size of the atom,

this size cannot change during free fall, according to �rst-order perturbation theory. In other words,
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as was the case for the same atom in the presence of an applied DC magnetic �eld, the atom is

�quantum incompressible� in the presence of the tidal gravitational �eld of the Earth, which tries

to squeeze the atom radially so as to continuously change its energy state, as if it were a dropped

rubber ring. Once again, one must make a distinction here between continuous compressions arising

from changes in the total potential energy (e.g. compression of the walls containing a quantum

object in an in�nite square well), and the response of the system to a perturbing �eld. In the

gravitational case, once again, just as in the magnetic case, the energy-level shift brought about in

the atom by the Earth�s tidal gravitational �eld leads to a force on the atom in a Newtonian picture.

This force causes the atom to become a low-�eld seeker in an inhomogeneous �eld �in this case an

inhomogeneous gravitational �eld �through the relationship

(F
h�h)n = �r (�Eh�h)n � �

1

2
mea

2
nt
2 r

�
g2

R2E

�
. (85)

This force will cause the atom to fall slightly more slowly in an inhomogeneous gravitational �eld

when its motion is compared to that of a freely falling, point-like, classical test particle located near

the center of mass of the atom.

For the h � p terms in (61), one starts by noting that the operator itself is purely imaginary, since

the momentum operator is proportional to i. Since the wavefunctions do not share this property,

and since the h � p operator (unlike the A � p operator) contains no derivatives with respect to �, it

is clear that the expectation value for the h � p operator will be purely imaginary.

In general, it can be shown that for any two quantum operators a and b that operate on a

wavefunction 	0,

h	0ja � bj	0i =


	0jby � ayj	0

��
; (86)

and in the special case that both a and b are Hermitian operators, i.e. ay = a and by = b,

h	0ja � bj	0i = h	0jb � aj	0i� :
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Since both h and p are individually Hermitian operators, we have

h	j fh;pg j	i = h	jh � pj	i+h	jp � hj	i = h	jh � pj	i+h	jh � pj	i� = 2Re h	jh � pj	i = 0; (87)

and one sees that the operator fh;pg is Hermitian, with eigenvalue zero. Thus, the energy shifts

due to the interaction Hamiltonians that are proportional to fh;pg are zero for all states.

As with the A �A and A � p terms, for completeness, one must calculate the second-order per-

turbation term in fh;pg in addition to the �rst-order perturbation term in h � h. Similar to that

in (78), the full energy expression for an fh;pg perturbation is given by

En � E(0)n +
X

n0 6=n;l0;m0

jh	nlm jfh;pgj	n0l0m0ij2

E
(0)
n � E(0)n0

; (88)

where the �rst-order term is omitted, since it was previously shown to be zero. However, the above

analysis that lead to the �rst-order fh;pg terms being zero can be generalized to show that the

expectation value satis�es

h	nlmj fh;pg j	n0l0m0i = 0 (89)

for all wavefunction states 	. Thus, all second-order fh;pg terms are zero as well.

Quantum incompressibility will hold as long as transitions out of the initial quantum state

	n;n�1;n�1 cannot occur. It will also hold more generally for a time-varying tidal gravitational �eld,

as long as the characteristic frequency of this �eld is much less than the energy gap corresponding to

a quantum transition of the atom from the nth state to the nearest allowed adjacent states divided

by Planck�s constant, i.e., when the �eld is su¢ ciently weak to render any discontinuous quantum

jump out of the initial state 	n;n�1;n�1 highly improbable. The same consideration also implies

that the duration of free fall t must be su¢ ciently short for the energy level shift given in (83) to

remain a small perturbation.

The time-dependence of the interaction Hamiltonian in (82) can be explained when one considers
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the following thought experiment. If, at time t = 0, a quantum transition is made (e.g. excited by

laser stimulation), the wavefunction for the new state, which, to �rst order, has an energy given by

the sum of the unperturbed energy level and the expectation value of the interaction Hamiltonian

in (46), represents the initial state. For short time scales, the DeWitt energy shift, found by taking

the expectation value of the interaction Hamiltonian in (82), further perturbs the energy levels, as

measured by the distant inertial observer. This energy shift would cause a time-dependent change in

the transition frequency between two adjacent states, though this e¤ect would be extremely di¢ cult

to measure in the Earth�s gravitational �eld.

If a Rydberg atom with principal quantum number n �103 were suspended at the surface of the

Earth, one could expect the possibility of a quantum transition to occur over a time scale on the

order of 104 years due to the DeWitt energy shift. For a Chandrasekhar-limit gravitational source,

the time scale is reduced to tens of days, and at the surface of a typical neutron star, the time scale

is reduced to milliseconds.

In the transverse-traceless gauge, the gravitational vector potential h is identically set to zero

everywhere, akin to performing a gauge transformation that sets the electromagnetic vector poten-

tial A identically equal to zero everywhere. Recall that since the magnetic �eld B is equal to the

curl of A, one can arbitrarily add a term that can be expressed as the gradient of a scalar function

to A without changing the value of the magnetic �eld, since the curl of any gradient is equal to the

zero vector. Thus, one can locally de�ne a gauge where the electromagnetic vector potential is zero

at each point in space by choosing the scalar function such that its gradient is equal to the additive

inverse of A at that point. However, physical e¤ects that depend on A, such as the Aharonov-

Bohm e¤ect, are overlooked. In general relativity, one can describe the transverse-traceless gauge as

the coordinate system which is �locked-on�to freely-falling test particles in the gravitational �eld,

i.e. a coordinate grid whose intersections are de�ned in such a way as to co-move along with the

freely falling particles located at these intersections, as seen by the distant inertial observer. Thus,

the coordinate system itself is distorted by the gravitational �eld, and therefore no relative motion
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between the coordinate system and the freely falling particles is measured. Therefore, there can

never be any non-zero kinetic energy of the test particles as measured by the observer in this frame,

and thus the velocity �eld h is zero everywhere. In the DeWitt gauge, where measurements are

made by a distant inertial observer in asymptotically �at spacetime, global, holonomic e¤ects can

be measured due to the presence of the gravitational vector potential [19]. Though the measure-

ments made from these two gauge choices are di¤erent, gauge invariance is still preserved, since

the two represent more than a simple gauge choice. The transverse-traceless gauge assumes that

the local spacetime coordinate grid is curved in such a way that the spacetime at in�nity need not

be asymptotically �at, whereas the DeWitt gauge requires that spacetime be asymptotically �at at

in�nity. Thus, a distant inertial observer situated in asymptotically �at space using the DeWitt

gauge measures relative motion between the freely-falling particles and his/her coordinate system,

and concludes that h is non-zero. Thus, these two gauges use a di¤erent model for spacetime itself,

with di¤erent boundary conditions at in�nity, whereas gauge invariance only applies to di¤erent

coordinate systems within the same space. Further analysis of gauge invariance of the energy shifts

derived above is presented in the next section.
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5.5.3 Gauge Invariance of Energy Shifts

The energy shift in (83) cannot be transformed away by any particular gauge choice, just as (69)

cannot be transformed away either, since both can be expressed in terms of the square of the covariant

Riemann curvature tensor components Ri0i0 of the Earth�s gravitational �eld, where i = f1; 2g;

recalling that the Earth�s tidal �eld is isotropic in the x and y directions. The fact that the force in

(85) cannot be transformed away by gauge choice can be demonstrated by recasting this result in

terms of the Riemann curvature tensor arising from Earth�s gravity.

The two objects in Figure 1 obey the geodesic deviation equation of motion (EOM) [10]

d2�i

dt2
= �Ri0j0�j , (90)

where �i is the distance vector from one object to the other object (here i = 1; 2 and j = 1; 2 corre-

spond to the horizontal x and y axes of the tangent plane to the midpoint between the two objects;

the z axis, which is the vertical axis with i = j = 3, will be omitted throughout this calculation), t is

the free-fall time, and Ri0j0 are certain components of the Riemann curvature tensor (the zero index

corresponds to the time index, and repeated indices are summed in accordance with the Einstein

summation convention.) This EOM is valid assuming that the objects are nonrelativistic, i.e., that

they are moving slowly compared to the speed of light. Also, in the Newtonian limit (which is valid

for Earth�s weak gravitational �eld), recall from (26) that [10]

Ri0j0 = �ik
@2�

@xk@xj
, (91)

where � is the gravitational potential of Earth�s �eld. Thus the two objects experience tidal gravi-

tational �elds according to the Newtonian viewpoint. Since the second partial derivatives of � are

nonvanishing for Earth�s gravitational �eld, the Riemann curvature tensor from (91) is also nonvan-

ishing. Hence no coordinate transformation can cause this tensor, or any quantity that depends on

it, to vanish identically.
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Since the two objects in Figure 1 are being dropped from the same height above the Earth�s

surface, and since the tidal �elds are isotropic in the x and y directions, the Riemann curvature

tensor is diagonal in the indices i and j, i.e.,

Ri0j0 =
1

2
�ijR

0
00 for fi; jg = f1; 2g , (92)

where the prime denotes a partial contraction over the isotropic, horizontal spatial indices only, i.e.,

explicitly,

R000 �
2X
i=1

Ri0i0; (93)

which are components of the Ricci tensor. From a general relativistic viewpoint, this means that

the two objects are being squeezed horizontally along with space as they fall, so that they approach

the midpoint in between them. Therefore they converge towards each other during free fall.

For the case of two identical objects with mass m, the geodesic deviation EOM reduces to the

following Newton�s EOM for each object:

Fi = mg0i = m
d2xi
dt2

= �ke¤xi , (94)

where ke¤ is an e¤ective Hooke�s constant. In this case, the horizontal components of the acceleration

g0i of the two objects is related to the relative acceleration between them as follows:

2g0i = 2
d2xi
dt2

=
d2�i

dt2
= �Ri0j0�j .

Now consider the free fall of the two objects through a hole which is dug across an entire diameter

of the Earth. It shall be shown that in this case the Riemann curvature tensor is a constant, and

that the motion of the two objects reduces to that of a simple harmonic oscillator, assuming that the

mass density of the Earth is a constant. Recall that Newton�s theorem of spheres (or equivalently,

Gauss�s theorem) implies that only the mass interior to the two objects as they fall is e¤ective in
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contributing to the gravitational force, i.e.,

jF j = GMencm

r2
=
4��r3

3

Gm

r2
=
4�G�m

3
r = ke¤r . (95)

Thus the e¤ective Hooke�s constant is

ke¤ =
4�G�m

3
, (96)

where the mass density � of the Earth has been assumed to be constant. This implies that freely

falling masses undergo simple harmonic motion with a period of

T =
2�

!
=

r
3�

G�
= 2�

s
R3E
GME

= 2�

s
RE
gE

, (97)

where RE is the radius of the Earth, and ME is its mass. Note that in accordance with the

equivalence principle, T is independent of the mass m.

The free-fall trajectories are directed radially towards the center of the Earth, and so the incli-

nation angle does not change during free fall, using the approximation that the gravitational force

between the two falling objects is negligible. Therefore, by a similar-triangles argument to be given

below, the geodesic deviation EOM becomes the simple harmonic oscillator EOM with the same

period of motion as that of a single object falling down the hole.

Since the right triangles in Figure 1 remain similar during the free fall of these objects down

the hole, the distance between them scales proportionally to the radial distance to the center of the

Earth at all times. Therefore the geodesic deviation EOM has the form of that of a simple harmonic

oscillator with a frequency !, i.e.,

d2x

dt2
= �R1010x = �!2x = �

4�2

T 2
x , (98)

where the period T of simple harmonic motion is the same for both the radial and the horizontal
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motions of the two objects. It is therefore concluded that the Riemann curvature tensor is a constant

within the interior of the Earth, and is given by

R1010 = R2020 =
1

2
R000 =

4�2

T 2
=
GME

R3E
=

gE
RE

, (99)

where gE is the acceleration due to Earth�s gravity at the surface of the Earth, which is a constant

that does not depend on the distance from the center of Earth, reserving the symbol g for the

gravitational acceleration that varies with the distance from the center of Earth, and ME is the

mass of the Earth.

DeWitt�s vector potential in this case can be expressed as

h(x; y; t) = v(x; y; t) = g0t =
gE t

RE
hx;y;� 2zi = 1

2
R000t hx;y;� 2zi , (100)

which is analogous to the expression for the electromagnetic vector potential in the symmetric gauge

choice

A =
1

2
B� r = �1

2
B hy;� x; 0i , (101)

where the EM vector potential has been expressed in terms of the magnetic �eld B, which is a

homogeneous �eld, just as (100) expresses the gravitational vector potential in terms of the covariant

Riemann curvature �eld R000, which is also a homogeneous �eld within the interior of the Earth.

The energy level shift expressed in terms of the Riemann curvature R000 is given by

(�Eh�h)n =
mg2t2

2R2
h	n;n�1;n�1jx2 + y2 j	n;n�1;n�1i �

ma2ng
2t2

2R2
=
ma2nR

02
00t

2

8
, (102)

which cannot vanish identically under any coordinate transformation.

The force on the Rydberg atom can also be expressed generally in terms of the Riemann curvature

(F
h�h)n = �r (�Eh�h)n = �

ma2nt
2

2
r
�
g2

R2

�
= �ma

2
nt
2

8
r
�
R0200

�
. (103)
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This force vanishes during the free fall down the hole dug through a diameter of the Earth, since

the Riemann curvature tensor is a constant. However, it is nonvanishing when the circular Rydberg

atom is above the surface of the Earth, leading to a time-dependent energy shift.

Though the energy shift in (102) is expressed in terms of the covariant Riemann curvature and

thus cannot be made to vanish identically by any gauge choice, the value of the shift itself will

be measured di¤erently by observers in frames that have relative motion between them. This

phenomenon occurs even in special relativity, where the total energy E of the atom satis�es

E2 = p2c2 +M2c4: (104)

This energy is minimized in the frame that is co-moving with the atom (where p = 0), yielding the

rest energy Erest = Mc2. The rest energy is an invariant quantity which is agreed upon by all

observers.
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5.6 Down the Rabbit Hole: Free Fall Through a Massive Gravitational

Source

It was noted in the previous section that the Riemann curvature tensor is constant within a hole

drilled diametrically through the center of the Earth. This suggests that the behavior of a freely-

falling system could be di¤erent when falling through this hole, as compared to free fall that occurs

above the Earth�s surface. This is indeed the case, and the problem of free fall through the hole,

which will be henceforth dubbed as the �rabbit hole,� and abbreviated �RH,� will be explored

further.

5.6.1 Free Fall of Classical Systems Within the Rabbit Hole

Consider a system of massive test particles free falling through the RH. It will be shown that the

behavior of this system during free fall is quite di¤erent in the RH compared to free fall above the

surface of the Earth. For simplicity, consider the RH to be su¢ ciently narrow as compared to the

radius of the Earth, so that the Earth can be modeled as solid. Furthermore, the approximations

that the Earth is non-rotating, spherical, and has a constant density are made as well. See Figure

4.

Figure 4: A system of test particles with center of mass labeled by � freely falling through the RH.
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The gravitational potential � of an object in the RH can be found using Gauss�law for gravity,

given by I
g � da = �4�GMenc ; (105)

where da is a di¤erential area element on the Gaussian surface, G is Newton�s gravitational constant,

and Menc is the mass of the gravitational source that is enclosed by the Gaussian surface. By the

divergence theorem, (105) can be expressed as

Z
r � g dV = �4�GMenc : (106)

Since the gravitational �eld is conservative, one can de�ne a potential � as

g = �r�; (107)

and thus (106) becomes Z
r2� dV = 4�GMenc : (108)

Within the RH, one can consider a spherical Gaussian surface of radius r, over which r2� is

constant. Thus,

r2�
�
4

3
�r3
�
= 4�G

�
4

3
�r3�

�
; (109)

where � is the mass density of the Earth, which is assumed constant. Thus, the potential is a

solution to the Poisson equation

r2� = @2�

@r2
+
2

r

@�

@r
= 4��G; (110)

which will be dependent only on the radius of the Gaussian sphere, due to the spherical symmetry

of the Earth.
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Substituting the ansatz

� = C1r
2 +�0 (111)

into (110) yields

r2� = 6C1 = 4��G; (112)

and thus the potential is given by

� =
2

3
��Gr2 +�0; (113)

where the constant �0 is an arbitrary choice for the potential at the center of the sphere, where

the gravitational �eld is zero since the potential is constant. This value will be set to zero for the

moment, though this topic will be revisited in Section 5.8. By making a substitution for the mass

density of the Earth, the potential can be rewritten as

� =
2

3
�

�
ME
4
3�R

3
E

�
Gr2 =

gE
2RE

r2: (114)

Thus, the gravitational potential energy is

V = m� =
mgE
2RE

r2; (115)

where m is the mass of an object in the gravitational �eld. This gravitational �eld causes interesting

behavior of a freely-falling system of particles. Gravitational acceleration increases linearly with

increasing distance from the center of the Earth, as opposed to a 1=r2 dependence outside the RH.

If the hole is dug to the center of the Earth instead of diametrically across, two objects dropped

from rest at di¤erent heights will strike the bottom of the hole at the same time, regardless of their

initial positions, unlike free fall above the surface of the Earth, where the lower object will strike

the ground �rst. If the hole is dug past the center of the Earth, it is the object dropped further

from the center of the Earth which will strike the bottom of the hole �rst. Many of these results

are counter-intuitive, but are the nature of the di¤erence between gravitational potential solutions
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to Laplace�s equation above the surface of the Earth, and Poisson�s equation within the RH.

Consider the same two objects that were freely falling in the gravitational �eld of a point mass,

introduced in Section 5.3. Let these two objects, the ring and the point-like mass, now undergo

free fall through the RH. For reasons that will become clear shortly, only the extended ring will be

considered here. The gravitational potential energy of a di¤erential element of the ring is given by

dVext =
gEr

2

2RE
dm =

gEr
2

2RE
�`a d�; (116)

where �` is the linear mass density of the ring. Thus,

dV =
gEr

2

2RE

� m

2�a

�
a d� =

gEr
2

2RE

m

2�
d�: (117)

Integrating this expression, while noting that the prefactor of the di¤erential angle element is inde-

pendent of �, leads to

V =
mgE
2RE

r2 =
mgE
2RE

h
(h� y)2 + a2

i
; (118)

where y is the distance fallen. This expression is the same as that in (115), which is expected by

symmetry, i.e. the distance from the center of the Earth is the same at each point in the ring.

The total energy of the ring, when dropped from rest at the opening of the RH, is

E =
mgE
2RE

�
R2E + a

2
�
=
1

2
mgERE +

mgEa
2

2RE
: (119)

The potential energy is

V =
mgE
2RE

h
(RE � y)2 + a2

i
(120)

and thus the kinetic energy is

T = E � V = mgE
2RE

�
2REy � y2

�
: (121)
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It can be seen from this expression that the kinetic energy of the ring undergoing free fall through

the RH is independent of a, and therefore will fall with the same velocity as the point-like object.

Recall that this was not the case for free fall in the gravitational �eld of the point mass, which is

the same gravitational �eld that the Earth produces (using the assumptions for the Earth described

in the beginning of this section) when M 0 =ME , when free fall occurs above the Earth�s surface.
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5.6.2 Free Fall of the Hydrogen Atom Within the Rabbit Hole

To analyze the behavior of the hydrogen atom in free fall within the RH, one can start by deriving

the velocity �eld of a particle within the freely falling system as measured from the center of mass of

the system. Consider the system shown in Figure 4, released from rest at time t = 0, freely falling

down the RH. Let a single test particle within the freely falling system be at position r = hx1; x2; x3i.

Without loss of generality, only the two-dimensional problem will be considered explicitly, since the

Earth has axial symmetry, and thus the e¤ects are isotropic along the x1 and x2 dimensions, which

are transverse to the direction of motion of the center of mass of the test particle system during free

fall. The accelerations of the center of mass, and an arbitrary particle at position hx1; x3i = hx; zi

are shown in Figure 5. The magnitude of the gravitational force of the Earth within the RH can

Figure 5: Diagram showing the acceleration of a particle within the freely falling system, and the
acceleration of the center of mass of the system. Within the RH, the magnitude of the acceleration
is no longer proportional to the inverse square of the distance between an object and the center of
mass of the earth, but directly proportional to that distance.

be derived from Gauss�law for gravity

I
g�da = �4�GMenc ; (122)

where da is a di¤erential area vector normal to the Gaussian-like spherical surface of radius r, and G

is Newton�s gravitational constant. Since g is constant in magnitude and everywhere anti-parallel

to da over the Gaussian-like surface, and mass is equal to the product of volume and density, (122)
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becomes

g
�
4�r2

�
= 4�G

�
4

3
��r3

�
; (123)

and thus

g = �!2r br; (124)

where

! �
r
4

3
��G =

r
gE
RE

: (125)

This result, identical to that which was derived using the Riemann curvature tensor in Section 5.5.3,

shows that the gravitational acceleration of an object freely falling through the RH is proportional

to the radial distance from the center of the Earth. At the opening of the RH (i.e. the surface of

the Earth), Menc is equal to the mass of the Earth, and so one recovers Newton�s inverse-square law

for gravity, continuously, when the Gaussian-like surface is at the surface of the Earth.

Using (124), it can be seen that the accelerations of the particle and of the center of mass of the

system are given by

gp = �!2rp hsin �; cos �i = �!2 hx; z + rcm i (126)

gcm = �!2 h0; rcm i ; (127)

and thus the acceleration of the particle with respect to the center of mass of the system is given by

grel = gp � gcm = �!2 hx; zi : (128)

The equations that describe the motion of the particle with respect to the center of mass are thus

d2xi
dt2

= �!2xi; (129)
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which has solutions

xi = x0;i cos!t+
h0;i
!
sin!t; (130)

where x0;i and h0;i are the initial position and velocity, respectively, of the particle with respect to

the center of mass along the xi axis, for i = 1; 2; 3.

Di¤erentiating (130) with respect to t gives the components of the velocity �eld h as

hi = �!x0;i sin!t+ h0;i cos!t = !

s
x20;i +

h20;i
!2

� x2i : (131)

For a Rydberg atom released from rest and allowed to fall down the RH, this velocity �eld simpli�es

to

hi = !
q
a2n � x2i ; (132)

where an is the atomic radius of the atom in the nth energy eigenstate. This velocity �eld will

become important when calculating gravitationally-induced energy shifts in the electron orbitals.

From (131), it is clear that the h � h operator satis�es

h � h =h20 + !2
�
r20 � r2

�
; (133)

where r0 and h0 are the initial position and velocity of the particle with respect to the center of

mass, satisfying

r20 =
X
i

x2i;0 (134)

h20 =
X
i

h20;i; (135)

respectively.

Consider the energy shift in a hydrogen atom in which its constituent particles begin with zero
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radial velocity with respect to the center of mass

�Eh�h =
!2

2

�
me



	ja2n � r2e j	

�
+mp



	ja2p � r2pj	

��
; (136)

where the second term in the parentheses is due to the proton contribution. Since the proton and

electron move symmetrically about the center of mass of the atom, with the proton�s deviation scaled

down by a factor equal to the ratio of the masses of the electron and proton, and this deviation is

squared in the energy shift,

mp



	ja2p � r2pj	

�
/ mp

�
me

mp

�2 

	ja2n � r2e j	

�
=

�
me

mp

�
me



	ja2n � r2e j	

�
; (137)

and therefore the proton contribution will be three orders of magnitude smaller than that of the

electron. Thus, the proton term will be neglected, and the expression for the energy shift that will

be used for the hydrogen atom undergoing free fall in the RH is thus

�Eh�h �
me!

2

2



	ja2n � r2e j	

�
=
megE
2RE



	ja2n � r2e j	

�
: (138)

From this expression, it can be seen that the energy shifts with the largest magnitude will correspond

to the states that have probability distributions that vary widely from the average atomic radius an,

whereas the atom in states that have probability distributions that do not vary much from an will

experience small energy shifts.

Since the electron probability distribution peaks at the center of the atom for states with zero

angular momentum, and at an for the stretched states, it is expected that the largest magnitudes of

this shift will correspond to large values of n and small values of l, and that the circular states will

have small energy shifts which approach zero as n approaches in�nity.
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Explicitly evaluating the energy shifts for the stretched states yields

�Eh�h � megE
2RE

24a2n � 2�
R1
0
r2n+2 exp

�
� 2
na0

�
dr
R �
0
sin2n�1 � d�

2�
R1
0
r2n exp

�
� 2
na0

�
dr
R �
0
sin2n�1 � d�

35 (139)

=
megE
2RE

�
a2n � (2n+ 2) (2n+ 1)

�na0
2

�2�
:

As n becomes large, this energy shift becomes

�Eh�h �
megE
2RE

�
a2n � n4a20

�
=
megE
2RE

�
a2n � a2n

�
= 0; (140)

as expected.

One can see by substitution of (114) into (35) that the Parker interaction Hamiltonian for a

hydrogen atom that is freely falling through the RH is given by

HP =
megE
2RE

r2; (141)

and that the energy shift is given by

�EP = h	jHP j	i =
megE
2RE



	jr2j	

�
: (142)

Repeating the analysis presented in Section 5.5.2, one can see that the expectation values of the

fh;pg operator will be zero for all states inside the RH, as they were outside.
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5.7 Classical Objects and Circular Rydberg Atoms in Free Fall

5.7.1 Classical Objects and Circular Rydberg Atoms in Free Fall Through the Rabbit

Hole

Inside the RH, it is clear from (115) that a point mass m has total energy

Ept,inside =
mptgEh

2

2RE
; (143)

and from (118) that a thin, classical, rigid ring with mass m and radius a has total energy

Eext,inside =
mextgE

�
h2 + a2

�
2RE

=
mextgEh

2

2RE
+
mextgEa

2

2RE
� E0pt,inside +�Eext (144)

when released from rest a distance h from the center of Earth. Thus, the total energy of the ring

consists of a term that considers the point-like energy of the system, plus an additional term that

arises from its extended mass distribution.

Consider a Rydberg atom in the circular state, with a large value of n. The atom consists

of a point-like proton with mass mp and a ring-like electron with mass me. Thus, the proton

contribution to the total energy is

Ep+,inside =
mpgEh

2

2RE
; (145)

and the electron contribution is

Ee-,inside =
megE

�
h2 + a2n

�
2RE

; (146)

and thus the total energy of the atom is

Etot,inside =
MgEh

2

2RE
+
megEa

2
n

2RE
; (147)

where M = mp +me is the total mass of the atom. This form is similar to (144) in that there is
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a point mass energy for the atom, with an additional term for the electron orbital, which has an

extended mass distribution.

Furthermore, recall that the energy shift for the hydrogen atom in a circular Rydberg state due

to the Parker interaction Hamiltonian, shown in (53) is equal to the second term on the right side

of (147). Thus, the potential energy shift resulting from this interaction Hamiltonian is the same

energy shift due to an extended mass distribution of a classical system. Recall also that the energy

shift for this atom due to the DeWitt interaction Hamiltonian was zero for free fall through the RH,

suggesting that the highly excited Rydberg atom will behave like a thin, classical, rigid ring with

radius an when the two systems undergo free fall through the RH.
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5.7.2 Classical Objects and Circular Rydberg Atoms in Free Fall in the Field of a

Point Mass

In Section 5.3, it was determined that a point mass m has total energy

Ept,outside = �
GM 0mpt

h
= �mptgh; (148)

and that a thin, classical, rigid ring with mass m and radius a has total energy

Eext,outside = �
mextgh

2

p
h2 + a2

: (149)

When the radius of the ring is small compared to the distance from the gravitational source, one

can perform a Taylor expansion about a = 0 to �nd that

Eext,outside = �
�
mextgh+

mextga
2

2h
+O(a4)

�
: (150)

Thus, for short free fall distances near the surface of the Earth,

Eext,outside � �
�
mextgERE +

mextgEa
2

2RE

�
; (151)

which, again, has the form of a point mass energy plus an additional term due to the extended mass

distribution. An analysis similar to that done in equations (145)�(147) can be done to show that

the total energy for the circular Rydberg atom is given by

Etot,outside = �
�
MgERE +

megEa
2
n

2RE

�
; (152)

where the second term arises from the energy shift due to the Parker interaction Hamiltonian. Note

that in both the classical and quantum cases here, the additional energy term causes the extended

system to become a low gravitational �eld seeker, and thus both the classical ring and the circular
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Rydberg atom will fall more slowly than a nearby, point-like test mass.

However, unlike the case for free fall inside the RH, here there is a non-zero, time-dependent

energy shift due to the DeWitt interaction Hamiltonian given by

�Eh�h �
meg

2
E t
2a2n

2R2E
: (153)

Thus, as the atom undergoes free fall, there is an additional energy shift not seen in classical

systems, or even in the same atom undergoing free fall through the RH. As mentioned before, this

is a positive-de�nite energy shift that causes the atom to experience a gravitational diamagnetism

force, in addition to the gravitational diamagnetism force experienced by extended systems in tidal

�elds. This phenomenon will result in an atom falling more slowly than the classical rigid ring with

the same radius (i.e. an), which in turn falls more slowly than a point mass, though the e¤ect would

be extremely di¢ cult to measure experimentally during free fall in the Earth�s gravitational �eld.

Nevertheless, this is a novel, quantum-mechanical e¤ect that cannot be explained classically.
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5.8 Gravitational Potential Inside and Outside the Rabbit Hole

An astute reader may notice that the two expressions for the total gravitational energy inside and

outside the RH are not equal at the opening of the RH. Speci�cally, when h = RE , the energy in

(143) is only half the energy in (148). Thus, there is a discontinuity at the opening of the RH.

This is not a physical discontinuity, however. Recall that the gravitational potential � was set to

zero at the center of Earth for the case of the RH, and set to zero at in�nity for free fall above the

surface of the Earth. This is appropriate when considering free fall that occurs entirely above or

below the surface, since the gravitational acceleration is proportional to the gradient of �, so adding

an arbitrary constant potential does not change the physical results. In other words, it is only

the di¤erence in potential between two points that leads to physical e¤ects, not the values of the

individual potentials themselves. However, these two expressions for the gravitational potential are

incompatible when the free fall of a massive system crosses the threshold of the RH. Though this

scenario will not be considered in detail here, a gravitational potential that is valid both inside and

outside the RH will be derived.

Recall from (113) that the solution to Poisson�s equation for a point mass in free fall within the

RH is given by

�in (r) =
2

3
��Gr2 +�0;in =

gE
2RE

r2 +�0;in : (154)

The solution to Laplace�s equation for a point mass in free fall outside the RH is given by

�out (r) =
c1
r
+�0;out : (155)

One can arbitrarily choose a point of zero potential, which will be at in�nity here, so �0;out = 0.

Since the two expressions and their �rst derivatives must be equal at the opening of the RH,

�in (RE) =
1

2
gERE +�0;in =

c1
RE

= �out (RE) (156)

d�in
dr

����
r=RE

= gE = �
c1
R2E

=
d�out
dr

����
r=RE

: (157)
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From (157), it is clear that c1 = �gER2E , and thus the full expression for the gravitational potential

outside the RH is given by

�out (r) = �
gER

2
E

r
: (158)

Substituting c1 into (156) yields

1

2
gERE +�0;in = �gERE ; (159)

and thus

�0;in = �
3

2
gERE ; (160)

and the full expression for the gravitational potential inside the RH is given by

�in (r) =
gE
2RE

r2 � 3
2
gERE : (161)

For the purposes of graphical depiction of the gravitational potential � and the gravitational

acceleration g = �d�
dr , the dimensionless variables < =

r
RE
, 
 = �

gERE
; and G = g

gE
are introduced.

The dimensionless expressions for the gravitational potentials as are given by


in (<) =
1

2

�
<2 � 3

�
(162)


out (<) = � 1< ; (163)

and the dimensionless gravitational accelerations are given by

Gin (<) = < (164)

Gout (<) =
1

<2 : (165)

A plot of the dimensionless potentials and accelerations are shown in Figure 6.
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Figure 6: Plot of dimensionless gravitational acceleration and potential functions that are valid for
regions both inside and outside the RH.
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5.9 Conclusions

Though it was shown by way comparison of (144) and (147), and the fact that the DeWitt energy

shift was shown to be zero in (140), that a circular Rydberg atom freely falling through the RH will

behave similarly to a classical rigid ring with the same radius in the limit n ! 1, it is noted that

there exists a non-zero, negative-de�nite shift for all �nite energy states that arises from the kinetic

energy term in the full Hamiltonian (61). Recall that the large-n limit is an approximation, and

that a negative energy shift, given by (138), occurs for any �nite value of n, even in the stretched

state. This will cause the atom to become a high-�eld seeker, suggested by the analysis appearing in

(85), and thus fall at a higher rate than that of a classical system, regardless of the mass distribution

of the classical system. This is, again, a novel quantum-mechanical e¤ect that cannot be explained

classically, since it can be seen from the analysis presented in equations (7)�(11) that no classical

object should fall faster than a point mass in the Earth�s gravitational �eld. Furthermore, since the

energy shift is negative, the tidal gravitational �eld acts to force the electron wavefunction into a

lower energy state, though as mentioned in Section 5.4, only in highly unusual circumstances will

such a quantum transition take place in the Earth�s gravitational �eld. The analysis of the quantum

transition was performed for the time-independent energy shift, but a similar conclusion is reached

for the time-dependent energy shifts in the Earth�s gravitational �eld and short free fall times.

It was also shown that a positive-de�nite energy shift arises from the kinetic energy term of the

full Hamiltonian operator when the atom is freely-falling outside the RH, i.e. above the Earth�s

surface. It becomes clear that this energy shift is positive de�nite when one varies azimuthal

angle � in (83). The fact that the shift is positive causes the atom in a circular Rydberg state

to fall at a slower rate than a classical rigid ring with the same radius as the atom, and an even

slower rate compared to that of a point mass. Note that for free fall above the Earth�s surface,

the fact that the time-dependent energy shift is positive suggests that as the atom falls, the tidal

gravitational �eld acts to force the electron wavefunction into a higher energy state, though again,

such a transition is extremely unlikely in the gravitational �eld of the Earth. This result suggests
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that the tidal gravitational �eld of the Earth acts to compress a classical ring such that its radius

becomes smaller, whereas the same �eld acts to increase the atomic radius of a circular Rydberg

atom. Though this result is somewhat counter-intuitive, it suggests that a hydrogen atom in the

ground state will eventually be ionized, i.e. �torn apart,�as it falls into a black hole, as expected.

Note that the time-independent energy shift from the potential energy term of the full Hamiltonian

operator is zero for the ground state, or any state with angular momentum quantum number equal

to zero, further suggesting that this energy shift is an incomplete analysis. This energy shift can

be positive, negative, or zero, depending on the initial state of the hydrogen atom.

Energy shifts corresponding to various initial wavefunction states are presented in Table 1 below.

n; l; jm`j �EP;outside(eV) �EP;inside(eV) 1
t2 ��Eh�h;outside(

eV
s2 ) �Eh�h;inside(eV)

1; 0; 0 0 3:7� 10�38 1:1� 10�43 �2:4� 10�38
2; 0; 0 0 5:1� 10�37 1:6� 10�42 �4:6� 10�37
2; 1; 0 �2:9� 10�37 3:7� 10�37 1:6� 10�42 �3:2� 10�37
2; 1; 1 1:5� 10�37 3:7� 10�37 9:0� 10�43 �3:2� 10�37
10; 9; 9 1:2� 10�34 1:4� 10�34 1:9� 10�40 �1:9� 10�35
100; 99; 99 1:2� 10�30 1:2� 10�30 1:9� 10�36 �1:8� 10�32
1000; 999; 999 1:2� 10�26 1:2� 10�26 1:9� 10�32 �1:8� 10�29

Table 1: Energy shifts for various wavefunction states
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6 Re�ection of Gravitational Microwaves from Thin Super-

conducting Films

6.1 Abstract

Thin superconducting �lms are predicted to be highly re�ective mirrors for gravitational waves at

microwave frequencies. The quantum mechanical delocalization of the negatively charged Cooper

pairs causes them to undergo non-geodesic motion in the presence of a gravitational wave, whereas

the decoherence-induced localization of the positively charged ions in the lattice causes them to

undergo geodesic motion in the presence of the same wave. The resulting charge separation leads to a

virtual plasma excitation within the superconductor that enormously enhances its interaction with a

gravitational wave, relative to that of a neutral super�uid and all normal matter. This enhancement,

dubbed the �Heisenberg�Coulomb e¤ect,�implies the specular re�ection of a gravitational microwave

even from a very thin superconducting �lm. The argument is presented using the BCS theory of

superconductivity and a superconducting plasma model.
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6.2 Introduction

One consequence of the relative motion between the lattice ions and the electron super�uid is that

it predicts thin superconducting �lms to be highly re�ective mirrors for gravitational waves at mi-

crowave frequencies. The quantum mechanical non-localizability of the negatively charged Cooper

pairs, which is protected from the localizing e¤ect of decoherence by an energy gap, causes the

pairs to undergo non-picturable, non-geodesic motion in the presence of a gravitational wave. This

non-geodesic motion, which is accelerated motion through space, leads to the existence of mass and

charge supercurrents inside the superconducting �lm. On the other hand, the decoherence-induced

localizability of the positively charged ions in the lattice causes them to undergo picturable, geodesic

motion as they are carried along with space in the presence of the same gravitational wave. The

resulting separation of charges leads to a virtual plasma excitation within the �lm that substan-

tially enhances its interaction with the wave, relative to that of a neutral super�uid or any normal

matter. The existence of strong mass supercurrents within a superconducting �lm in the presence

of a gravitational wave, dubbed the �Heisenberg-Coulomb e¤ect,�implies the specular re�ection of

a gravitational microwave from a �lm whose thickness is much less than the London penetration

depth of the material, in close analogy with the electromagnetic case. The argument is developed by

allowing classical gravitational �elds, which obey Maxwell-like equations, to interact with quantum

matter, which is described using the BCS and Ginzburg-Landau theories of superconductivity, as

well as a collisionless plasma model. Several possible experimental tests of these ideas, including

mesoscopic ones, are presented alongside comments on the broader theoretical implications of the

central hypothesis.

Not enough e¤ort has been made to investigate the rami�cations of the gravitational Maxwell-like

equations for the interaction of GR waves with matter, perhaps because the so-called �electromag-

netic analogy� has been so hotly contested over the years [20]. In any case, these equations may

provide a helpful framework for thinking about the response of non-relativistic matter to weak,
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time-varying gravitational �elds, especially that of macroscopically coherent quantum charge and

mass carriers, namely, the Cooper pairs of conventional, type I superconductors. It is argued here

that the electromagnetic analogy manifested in the Maxwell-like equations implies that type I su-

perconductors can be surprisingly e¢ cient mirrors for GR waves at microwave frequencies.

In Section 6.3, two basic claims are introduced upon which the larger argument rests. Together,

these two claims open the door to an enormously enhanced interaction between a GR microwave

and a type I superconductor, relative to what one would expect in the case of a neutral super�uid

or, indeed, any normal metal or other classical matter. The �rst claim is that a GR microwave will

generate quantum probability supercurrents, and thus mass and electrical supercurrents, inside a

type I superconductor, due to the quantum mechanical non-localizability of the Cooper pairs within

the material.

The non-localizability of Cooper pairs, which is ultimately due to the Uncertainty Principle (UP),

causes them to undergo non-picturable, non-geodesic motion in the presence of a GR wave. This

non-geodesic motion, which is accelerated motion through space, leads to the existence of mass and

charge supercurrents inside a superconductor. By contrast, the localizability of the ions within the

superconductor�s lattice causes them to undergo picturable, geodesic motion, i.e., free fall, in the

presence of the same wave. The resulting relative motion between the Cooper pairs and the ionic

lattice causes the electrical polarization of the superconductor in the presence of a GR wave, since

its Cooper pairs and ions carry not only mass but oppositely signed charge as well.

Furthermore, the non-localizability of the Cooper pairs is �protected�from the normal process of

localization, i.e., from decoherence, by the characteristic energy gap of the Bardeen-Cooper-Schrie¤er

(BCS) theory of superconductivity. The decoherence of entangled quantum systems such as Cooper

pairs (which are in the spin-singlet state) is the fundamental cause of the localizability of all normal

matter [21]. Indeed, this �classicalizing�process must occur within any spatially extended system

before the idea of the �universality of free fall�[22] can be meaningfully applied to its parts. After

all, the classical principle behind the universality of free fall, the Equivalence Principle (EP), is a
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strictly local principle [23].

The second of the two claims presented in Section 6.3 is that the mass supercurrents induced by

a GR wave are much stronger than what one would expect in the case of a neutral super�uid or any

normal matter, due to the electrical polarization of the superconductor caused by the wave. This is

referred to as the �Heisenberg-Coulomb (H-C) e¤ect.�The magnitude of the enhancement due to

the H-C e¤ect (derived in Section 6.8) is given by the ratio of the electrical force to the gravitational

force between two electrons,

e2

4�"0Gm2
e

= 4:2� 1042 , (166)

where e is the electron charge, me is the electron mass, "0 is the permittivity of free space, and G

is Newton�s constant. The enormity of (166) implies the possibility of an enormous back-action of a

superconductor upon an incident GR wave, leading to its re�ection.

Of the four fundamental forces of nature, viz., the gravitational, the electromagnetic, the weak,

and the strong forces, only gravity and electricity have long range, inverse square laws. The pure

number obtained in (166) by taking the ratio of these two inverse-square laws is therefore just

as fundamental as the �ne structure constant. Because this number is so large, the gravitational

force is typically ignored in treatments of the relevant quantum physics. But as shown below, a

semi-classical treatment of the interaction of a superconductor with a GR wave must account for

both the electrodynamics and the gravito-electrodynamics of the superconductor, since both play

an important role in its overall response to a GR wave.

In Section 6.4, the interaction between an EM wave and a thin metallic �lm, having an arbi-

trary, frequency-dependent complex conductivity, is considered. The relevant boundary conditions

are determined using Faraday�s and Ampere�s laws in order to derive general expressions for the

transmissivity and re�ectivity of a thin �lm. In Section 6.5, it is shown that, in the case of a super-

conducting �lm, the BCS theory implies that EM waves at microwave frequencies will be specularly

re�ected even from �lms whose thickness is less than the London penetration depth of the material,

or, equivalently (at su¢ ciently low frequencies), less than the material�s plasma skin depth, as has
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been experimentally observed [24, 25]. It is shown, furthermore, that the frequency at which re�ec-

tivity drops to 50%, what is referred to as the �roll-o¤ frequency�!r , depends only on the ratio of

the speed of light c to a single parameter, the length scale lk associated with the kinetic inductance

Lk of the �lm�s Cooper pairs [26], which in turn depends on the plasma skin depth �p . In the

electromagnetic case, the microscopic size of �p leads to a microscopic value for lk and thus to the

possibility of specular re�ection over a wide range of frequencies (including microwave frequencies)

in the EM case.

In Section 6.6, the Maxwell-like equations for linearized Einsteinian gravity are reviewed and

highlight the fact that any normal matter, with its inherently high levels of dissipation, will neces-

sarily be an ine¢ cient re�ector of GR waves because of its high impedance relative to the extremely

low �gravitational characteristic impedance of free space�ZG (2:8�10�18 in SI units). Superconduc-

tors, on the other hand, are e¤ectively dissipationless at temperatures near absolute zero because of

their quantum mechanical nature [25]. The fact that a superconductor�s e¤ectively zero impedance

can be much smaller than the very small quantity ZG allows it to re�ect an incoming GR wave, much

as a low-impedance connection or �short�at the end of a transmission line can re�ect an incoming

EM wave.

In Section 6.7, we appeal to the Maxwell-like equations introduced in Section 6.6, to the iden-

ticality of the boundary conditions that follow from them, and to the linearity of weak GR-wave

optics, in order to introduce GR analogs of the earlier EM expressions for the re�ectivity and roll-o¤

frequency. As in the EM case, the GR roll-o¤ frequency !r,G can be expressed as the ratio of the

speed of light c to a single parameter. In this case, however, the relevant parameter is the length scale

lk,G associated with the gravitational kinetic inductance Lk,G of the Cooper pairs. In this section we

treat the superconductor as if it were a neutral super�uid, i.e., as if its Cooper pairs were electrically

neutral particles interacting with one another and the with ionic lattice exclusively through their

mass. Although this assumption is unphysical, it leads to a result in agreement with conventional

wisdom, namely, that the gravitational plasma skin depth �p,G and the kinetic inductance length
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scale lk,G will be astronomical in size (� 1013 m and � 1036 m, respectively). Such enormous values

imply that !r,G will be e¤ectively zero, and thus that superconductors cannot function as mirrors

for GR microwaves in laboratory-scale experiments.

In Section 6.8, we show why the approach taken at the end of the previous section, in accord

with conventional wisdom, may be wrong. It might be possible for superconductors to function as

laboratory-scale mirrors for GR microwaves because of the H-C e¤ect. When one takes into account

the electrical charge separation induced within a superconductor by a GR wave (due to the BCS-

gap-protected non-localizability of its Cooper pairs), the ratio given in (166) enters into the analysis

in such a way as to keep lk,G microscopic and to raise !r,G to the level of !r . Thus the H-C e¤ect

greatly enhances the re�ection of a GR wave from the surface of a superconductor �by 42 orders of

magnitude! �relative to what one would expect from a neutral super�uid, a normal metal, or any

normal matter.

Because both charge supercurrents and mass supercurrents are generated by an incoming GR

wave (and by an incoming EM wave), it is also necessary to consider whether superconducting �lms

are not mirrors but rather transducers, i.e., converters, of GR radiation into EM radiation (in the

case of an incident GR wave), or vice versa (in the case of an incident EM wave). In Section 6.9, we

take up this particular question and show that transduction in both directions is too weak to decrease

re�ection by any appreciable amount. In section 6.10, however, we show that energy is conserved

only when transduction is included in the overall analysis as an e¤ective absorption mechanism.

Finally, in Section 6.11 we indicate several possible experimental tests of the basic claims ad-

vanced in the paper and o¤er brief comments on the broader theoretical implications of our central

hypothesis. Whereas present GR-wave experiments aim to passively detect GR waves originating

from astrophysical sources, our argument implies the possibility of several new types of laboratory-

scale experiment involving GR waves. One type would test the physics behind the Heisenberg-

Coulomb e¤ect by looking for a departure from geodesic motion in the case of two coherently

connected superconducting bodies that are allowed to fall freely through a distance large enough to
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observe tidal e¤ects. A second type would investigate the existence and strength of any gravitational

Casimir-like e¤ect between two type I superconductors. Yet a third type, involving an electrically

charged pair of superconductors, would allow for more direct investigation of the existence and prop-

erties of GR-waves, the results of which would bear signi�cantly on the search for a quantized theory

of gravity.

Three appendices address ancillary issues: (6A) the relationship between the magnetic and kinetic

inductances of a thin �lm, (6B) the kinetic inductance length scale according to a collisionless

plasma model, and (6C) the relationship between the impedance argument given in Section 6.6 and

Weinberg�s argument regarding the scattering cross-section of a Weber-style resonant bar antenna,

including an application of the Kramers-Kronig relations to the sum rule for the strength of the

interaction between a GR wave and a superconductor.
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6.3 The Uncertainty Principle Limits the Applicability of the Equivalence

Principle

It is helpful to begin the analysis with a simple model of the interaction between a weak GR wave

and a normal metallic �lm. For the sake of eventually considering the possibility of mirrors (i.e.,

the possibility of �ray�optics), we will assume here and throughout that the lateral dimensions of

the �lm are very large when compared to the wavelength of the incident wave. Focusing on waves

with very high frequencies, i.e., microwaves, will allow us to treat the ions and normal electrons of

a laboratory-scale �lm as though they were freely �oating, non-interacting �dust�or point particles

undergoing free fall along classical trajectories, i.e., traveling along geodesics.

Although it would be possible in principle, in this approximation, to detect the passage of a GR

wave over the �lm by observing the geodesic deviation among its di¤erent components (the principle

underlying LIGO), the �lm cannot, in this approximation, interact energetically with a very high

frequency GR wave. It cannot absorb or scatter any of the wave�s energy because each of its localized

particles must, according to the EP, travel along a geodesic, i.e., each particle must remain at rest

with respect to its local, co-moving, and freely-falling inertial frame [27]. And since there can be

no energetic interaction with the wave, mass currents cannot be generated locally within the �lm

without violating the conservation of energy.

It is true that a distant inertial observer will see the �dust�particles undergo quadrupolar motion,

and will thus expect the �lm to emit GR radiation. But this apparent paradox can be resolved by

noting that the wave causes the �lm�s ions and normal electrons (which are to be treated as test

particles whose masses and gravitational �elds are negligible) to be carried along with space rather

than accelerated through space. Only the latter kind of motion, in which the wave does work on

the particles, and hence transfers kinetic energy to them, leads to the time-varying mass quadrupole

moment that enters into Einstein�s quadrupole formula for the emission of GR radiation (see Figure

7).

The classical concept of a �geodesic�depends fundamentally upon the localizability, or spatial
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Figure 7: A snapshot of a square metallic plate with a very high frequency GR wave incident upon
it at the moment when the gravitational tidal �forces� on the plate are those indicated by the
hyperbolae, as seen by a distant observer. All ions, being approximately in free fall, are carried
along with space rather than accelerated through space. No work is done on them, and thus no
kinetic energy is transferred to them, by the wave. When the metal in the plate is normal, all ions
and all normal electrons locally co-move together along the same geodesics in approximate free fall,
so that the plate remains neutral and electrically unpolarized. However, when the plate becomes
superconducting, the Cooper pairs, being in non-local entangled states, remain at rest with respect
to the center of mass according to the distant observer, and do not undergo free fall along with the
ions and any residual normal electrons. This non-picturable, non-geodesic, accelerated motion of
the Cooper pairs through space leads to picturable quantum probability supercurrents, which follow
the same hyperbolae as the incident tidal GR wave �elds (see Eqs. (227)-(234)). Since the Cooper
pairs carry not only mass but also charge, both mass and electrical supercurrents are generated, and
both types of current carry energy extracted from the gravitational wave. In the snapshot shown,
this leads to the accumulation of positive charge at B and D, and to the accumulation of negative
charge at A and C, i.e., to a quadrupolar-patterned electrical polarization of the superconductor.
The resulting enormous Coulomb forces strongly oppose the e¤ect of the incoming tidal gravitational
�elds, resulting in the mirror-like re�ection of the incoming GR wave.

separability, of particles. From a quantum mechanical point of view, localizability arises ultimately

from the decoherence of entangled states, i.e., from the �collapse�of nonfactorizable superpositions

of product wavefunctions of two or more particles located at two or more spatially well-separated

points in space, into spatially separable, factorizable, product wavefunctions, upon the interaction

of the particles with their environment. Decoherence typically occurs on extremely short time-scales

due to the slightest interaction with the environment [21]. Whenever it does occur, one can speak

classically of point particles having trajectories or traveling along geodesics. Only after decoherence

has occurred does the Equivalence Principle become a well-de�ned principle, for only then does a
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particle�s geodesic become well de�ned. In other words, only through decoherence does the law of

the �universality of free fall,�i.e., the experimentally well-established claim that �the gravitational

acceleration of a point body is independent of its composition�[22], become meaningful.

Entangled quantum states imply the nonlocalizability of particles, in the sense that such states

lead to experimentally well-con�rmed violations of Bell�s inequalities [28, Chapters 6 and 19]. We

claim here that Cooper pairs are completely non-localizable within a superconductor, not only in

the sense of Heisenberg�s Uncertainty Principle, but also because each electron in a given Cooper

pair in the BCS ground state is in an entangled state, since each pair is in a superposition state

of the product of two electron wavefunctions with opposite momenta, and also simultaneously in

a superposition state of the product of two opposite electron spin-1/2 states (i.e., a spin-singlet

state). The violation of Bell�s inequalities by these entangled states in the BCS ground state means

that this state is non-local, in the sense that instantaneous correlations-at-a-distance between the two

electrons of a given Cooper pair must occur in the superconductor upon remote measurements within

a long, single continuous piece of superconductor (the distance between these remote measurements

can be arbitrarily large). Although these instantaneous correlations-at-a-distance cannot be used to

send signals faster than light [28], they also cannot be accounted for in any local, realistic theory

of quantum phenomena, including those which satisfy the completeness conditions demanded by

Einstein, Podolsky, and Rosen (EPR) [29].

The localizability or spatial separability of all particles, as envisioned by EPR, would of necessity

lead to the universal validity of the Equivalence Principle, and thus to the idea that even Cooper pairs

must undergo geodesic motion (i.e., free-fall) within a superconductor in response to an incident GR

wave. There could be no relative motion between the Cooper pairs and the ions, no spatial separation

of charges inside the superconductor, and no enhancement, even in principle, of the superconductor�s

interaction with a GR wave relative to that of a normal metal interacting with the same wave.

But Cooper pairs are manifestly not localizable within the superconductor, since they are fully

quantum mechanical, non-local systems. For this reason the �dust-particles-following-geodesics�
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model introduced earlier must fail in the case of a superconductor, even as a �rst approximation

[30].

When a conventional, type I superconductor is in the BCS ground state, each of its Cooper

pairs is in a zero-momentum eigenstate relative to the center of mass of the system. According

to Heisenberg�s Uncertainty Principle (UP), the fact that the Cooper pairs�momenta are perfectly

de�nite entails that their positions within the superconductor are completely uncertain, i.e., that

the pairs are non-localizable. The motion of a given Cooper pair within the superconductor is

irreducibly quantum mechanical in nature, being related to the pair�s wavefunction. Such motion

cannot be pictured in terms of a well-de�ned trajectory or geodesic [31]. Indeed, at a conceptual

level, the ascription of a �trajectory�or �geodesic�to a given Cooper pair within a superconductor

becomes meaningless in the BCS ground state. This is similar to what Bohr taught us concerning

the meaninglessness of the concept of �orbit� in the ground state of the hydrogen atom during its

interaction with radiation �elds [32, pp. 113¤].

The robustness of the BCS ground state in the face of perturbations is guaranteed by the BCS

energy gap, which �protects�the Cooper pairs from making quantum transitions into excited states,

such as happens in pair-breaking (as long as the material is kept well below its transition temperature

and the frequency of the incident radiation is below the BCS gap frequency [33]). The energy gap

prevents the pairs from decohering, and from becoming localized like the superconductor�s ions and

any residual, normal conduction electrons [34]. If the Cooper pairs cannot be thought of as localizable

point bodies, then the �universality�of free fall cannot be meaningfully applied to them. In short,

an application of the EP to the motion of Cooper pairs within a superconductor is fundamentally

precluded by the UP. This is not to make the well-known point that quantum �eld theories may

lead to measurable �quantum violations of the EP�due to possible ��fth-force�e¤ects that produce

slight corrections to particle geodesics (see, for example, Adelberger [22] and Ahluwalia [35]), but

rather to observe that the non-localizability of quantum objects places a fundamental limit on the

applicability of the EP (a point previously raised by Chiao [36, esp. Section V]).
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In contrast to a superconductor�s non-localizable Cooper pairs, its ions (and, at �nite tempera-

tures, any residual background of normal electrons) are una¤ected by the energy gap, and are thus

fully localized by the decohering e¤ect of their interactions with the environment. Thus, unlike

Cooper pairs, the ionic lattice possesses no coherent quantum phase anywhere. The geodesic motion

of the ions will therefore di¤er from the non-geodesic motion of the Cooper pairs. The latter, which

is accelerated motion through space, implies the existence of quantum probability supercurrents,

and thus of mass and electrical supercurrents, inside the superconductor (see Figure 7). These

supercurrents will carry energy extracted from the GR wave. The possibility of a non-negligible

energetic interaction between a GR wave and a superconductor depends crucially upon this initial

claim, which is implied by the absence of the localizing e¤ect of decoherence upon the Cooper pairs.

Before we turn to the second claim, it is worth noting that the non-geodesic motion of a super-

conductor�s Cooper pairs also follows from what London called the �rigidity of the wavefunction�

[37]. The phase of the wavefunction of each Cooper pair must be constant in the BCS ground state

prior to the arrival of a GR wave. This implies that the gradient of its phase is initially zero. Since

an incoming GR wave whose frequency is less than the BCS gap frequency cannot alter this phase

(in the lowest order of time-dependent perturbation theory), and since the canonical momentum of

any given pair relative to the center of mass of the superconductor is proportional to the gradient

of its phase, the canonical momentum of each pair must remain zero at all times with respect to the

center of mass of the system in the presence of a GR wave, as seen by the distant inertial observer.

This quantum-type rigidity implies that Cooper pairs will acquire kinetic energy from a GR wave

in the form of a nonzero kinetic velocity, i.e., that they will be accelerated by the wave relative to

any local inertial frame whose origin does not coincide with the center of mass of the system (for

example, at the corners of a large, square superconducting �lm; see Section 6.8). In other words,

the apparent �motionlessness�of the Cooper pairs in the presence of a GR wave, as witnessed by

a distant inertial observer, in fact entails their accelerated motion through local space. Again, this

behavior implies the existence of mass supercurrents inside the superconductor that carry energy
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extracted from the wave.

Of course, even normal matter such as in a Weber-style resonant bar detector has some extremely

small degree of rigidity arising from its very weak interatomic coupling. Thus normal matter does

not, strictly speaking, behave as a collection of freely falling, noninteracting �dust particles�in the

presence of a very low frequency GR wave. Instead, like the Cooper pairs, but to a much smaller

degree, and at much lower frequencies than the microwave frequencies being considered here, normal

matter opposes the squeezing and stretching of space going on around it (as Feynman pointed out in

his well-known remarks on why GR waves must carry energy [38]). Thus, even normal matter will

acquire an extremely small amount of kinetic energy as it is accelerated through space by a passing

GR wave. In this case, though, high levels of dissipation inside the material will cause whatever small

amount of energy is extracted from the GR wave to be overwhelmingly converted into heat instead

of being predominantly re-radiated as a scattered GR wave (as Weinberg has pointed out [39]). A

key feature of the mass supercurrents carried by Cooper pairs is that they are dissipationless. We

shall return to this particular point in Section 6.6.

The second basic claim underlying the paper�s larger argument follows from the dual nature

of the supercurrents generated by a GR wave within a superconductor. Since a GR wave will

generate both mass and charge supercurrents, it will electrically polarize the superconductor. This

important observation implicates the Coulomb force of attraction between the oppositely signed

charges that must accumulate at the edges of the superconductor, if there is to be no violation of

charge conservation (see Figure 7). These oppositely signed charges will consist of negatively charged

Cooper pairs, on the one hand, and corresponding, positively charged Cooper-pair holes (hereafter,

�holes�), on the other. An incoming GR wave with a frequency well below the superconductor�s

plasma frequency will thus generate a virtual plasma excitation inside the superconductor. The

resulting Coulomb force between the Cooper pairs and holes, which acts as a Hooke�s law restoring

force, strongly opposes the e¤ect of the incident wave. The enormous back-action of this force on the

motion of the Cooper pairs greatly enhances their mass conductivity (see Section 6.8), to the point

91



where specular re�ection of an incident GR wave from a superconducting �lm becomes possible. The

existence of strengthened mass supercurrents within a superconductor, which is due to the combined

e¤ect of the quantum non-localizability of the Cooper pairs and the Coulomb attraction between

the pairs and holes, is what we refer to as the �Heisenberg-Coulomb e¤ect.�

Consider, by way of contrast, what happens when a GR wave impinges on a super�uid, whose

constituent particles are electrically neutral. Mass supercurrents will again be induced by the wave,

due to quantum non-localizability, but in this case there will be no enhancement e¤ect because the

mass carriers within a super�uid are its electrically neutral atoms. Thus no appreciable fraction

of incident GR-wave power can be re�ected from the surface of a neutral super�uid. On the other

hand, one might worry that the size of the H-C e¤ect in a superconductor would drive its mass

supercurrents above the critical level, thereby undermining the possibility of specular re�ection.

But it should always be possible to arbitrarily reduce the amplitude of the driving radiation �eld

until the superconductor responds linearly to the �eld (see the related discussion of superluminality

at the end of Section 6.8). The existence of a linear-response regime guarantees the possibility of

fabricating linear GR-wave optical elements, including mirrors.
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6.4 The Interaction of an EM Wave with a Thin Metallic Film

The question of the interaction of an EM wave with a metallic �lm whose thickness d is small

compared to the wavelength can be addressed using �lumped-circuit� concepts such as resistance,

reactance, inductance, etc., of an in�nitesimal square element of the �lm. (As before, we assume, for

the sake of considering mirror-like behavior, that the lateral dimensions of the �lm are at least on par

with the wavelength of the incident wave.) In this section we derive a formula for the transmissivity

T as well as the re�ectivity R of a thin metallic �lm with an arbitrary, frequency-dependent complex

conductivity. In the next section we apply this analysis to the case of a superconducting �lm.

Figure 8: A thin metallic �lm of thickness d is straddled by a rectangular loop (dashed lines) for
applying Faraday�s law to it. An incident EM wave is partially transmitted and partially re�ected
by the �lm. The EM wave generates an electrical current density j, which �ows uniformly inside the
�lm. A similar rectangular loop (not shown) lying in a plane parallel to the magnetic �elds (denoted
by the circles with central dots) is for applying Ampere�s law.

The complex amplitude re�ection coe¢ cient r corresponding to the proportion of incident EM

radiation at frequency ! re�ected from a thin �lm and the complex amplitude transmission coe¢ cient

t corresponding to the proportion of the same radiation transmitted through the �lm can be de�ned

as follows:

Ere�ected = rEincident (167a)

Etransmitted = tEincident : (167b)
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By convention, r; if it is real, is de�ned to be positive when the re�ected electric �eld Ere�ected is

oppositely directed to the incident electric �eld Eincident . On the other hand, t; if it is real, is de�ned

to be positive when the transmitted electric �eld Etransmitted points in the same direction as the

incident electric �eld Eincident . In general, r and t are complex quantities whose values depend on

the frequency ! of the incident wave, but all radiation �elds will be treated classically.

Since the tangential components of the electric �elds must be continuous across the vacuum-�lm

interface, the electric �eld inside the �lm Einside drives a current density j inside the �lm that is

linearly related to this driving electric �eld, for the general case of a linear-response theory of the

interaction of matter with weak driving �elds. This linear relationship is given by

j(!) = �(!)Einside(!), where (168)

Einside = (1� r)Eincident at frequency !: (169)

In general, the conductivity �(!) associated with the current generated within the �lm at a given

driving frequency ! will be a complex quantity:

�(!) = �1(!) + i�2(!); (170)

where �1(!) represents the current�s in-phase, dissipative response at frequency ! to the driving

�eld at frequency !, and �2(!) represents the current�s out-of-phase, non-dissipative response at the

same frequency [40].

If the thickness of the �lm d is much less than a wavelength of the incident radiation, then the

right-hand side of Faraday�s law applied to the loop shown in Figure 8 encloses a negligible amount

of magnetic �ux �B , so that I
E � dl = �d�B

dt
! 0 : (171)
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Using the sign conventions introduced above, one �nds that

1� r � t = 0 . (172)

Now let us apply Ampere�s law [41]

I
H � dl = I (173)

to the �Amperian�loop (not shown in Figure 8) whose plane is parallel to the magnetic �elds of the

incident, re�ected, and transmitted EM waves, and perpendicular to the Faraday�s law loop shown

in Figure 8. Let this Amperian loop span the entire width w of the �lm in the direction of the

magnetic �eld. For a plane EM wave propagating in free space,

jHj = jBj
�0

=
jEj
Z0

, (174)

where Z0 is the characteristic impedance of free space and �0 is the magnetic permeability of free

space. It then follows that

w(1 + r � t)Eincident
Z0

= I , (175)

where

I = Aj = �wd(1� r)Eincident (176)

is the total enclosed current being driven inside the �lm by the applied electric �eld inside the �lm

(169), which leads to

1

Z0
(1 + r � t) = �d(1� r) . (177)

From (172) and (177) we have two equations in the two unknowns r and t, which can be rewritten
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as

1� r � t = 0 , and (178a)

1 + r � t = x(1� r) , (178b)

where x � �Z0d . Solving for 1=t and 1=r, one obtains

1

t
= 1 +

1

2
x; and (179a)

1

r
= 1 + 2

1

x
: (179b)

Using the de�nition T = tt� = jtj2 ; one then obtains for the reciprocal of the transmissivity

1

T =
1

tt�
=

�
1 +

1

2
x

��
1 +

1

2
x�
�

(180)

= 1 +
1

2
(x+ x�) +

1

4
xx�

= 1 + Rex+
1

4

n
(Rex)2 + (Imx)

2
o

=

�
1 +

1

2
Rex

�2
+
1

4
(Imx)

2 .

Substituting x = �Z0d = (�1 + i�2)Z0d into this expression, one �nds that

T =
(�

1 +
1

2
�1Z0d

�2
+

�
1

2
�2Z0d

�2)�1
. (181)

This general result, which applies to any thin metallic �lm with a complex conductivity, agrees with

Tinkham�s expression for T [25, Eq. (3.128)] in the case of a superconducting �lm when the index

of refraction of the �lm�s substrate in his expression is set equal to unity (i.e., when the �lm is

surrounded on both sides by free space).
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Similarly, using the de�nition R = rr� = jrj2 ; one obtains for the reciprocal of the re�ectivity

1

R =
1

rr�
= (1 + 2y)(1 + 2y�) (182)

= 1 + 2(y + y�) + 4yy�

= 1 + 4Re y + 4
n
(Re y)2 + (Im y)

2
o

= (1 + 2Re y)
2
+ 4 (Im y)

2 ,

where

y � 1

x
=

1

�Z0d
=

�

Z0d
(183)

and � is the complex resistivity of the �lm (again at frequency !). In general, � and � are related

by

� � 1

�
=

1

�1 + i�2
=
�1 � i�2
�21 + �

2
2

= �1 + i�2 , (184)

where

�1 =
�1

�21 + �
2
2

(185a)

�2 = �
�2

�21 + �
2
2

. (185b)

The re�ectivity of any thin metallic �lm with complex conductivity is therefore

R =

(�
1 + 2

�1
�21 + �

2
2

1

Z0d

�2

+

�
2

�2
�21 + �

2
2

1

Z0d

�2)�1
. (186)

Although the precise degree of re�ection for a �lm of given thickness d will depend on the speci�c

character of the �lm�s conductivity, the presence of the sum inside the �rst squared term of (186)

indicates that the dissipative component of the conductivity �1 will inhibit re�ection more strongly

97



than the non-dissipative component �2. With this clear hint of the importance of dissipationlessness

for achieving specular re�ection, we turn our attention to superconducting �lms.
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6.5 A Criterion for the Specular Re�ection of EM Waves from Super-

conducting Films

The BCS theory of superconductivity has been con�rmed by many experiments. Here we review

the application of this well-established theory to the problem of mirror-like re�ection of EM waves

from a superconducting �lm. We consider once again a �lm whose thickness d is small enough to

make the use of �lumped-circuit�concepts legitimate, but which is now also much smaller than the

coherence length �0 and the London penetration depth �L of the material (i.e., the so-called �local�

or �dirty�limit).

As Tinkham has noted [25, p. 39], the dissipative part of the conductivity of such a �lm �1s goes

exponentially to zero as T ! 0 in response to a driving wave whose frequency is less than

!gap =
2�(0)

~
�=
3:5kBTc
~

, (187)

where �(0) (henceforward abbreviated as �) is the gap energy per electron of the BCS theory at

T = 0, kB is Boltzmann�s constant, and Tc is critical temperature for the superconducting transition.

The exponential suppression of the �lm�s dissipative response is due to the �freezing out� of its

normal electrons through the Boltzmann factor exp (��=kBT ) as T ! 0.

On the other hand, the �lm�s non-dissipative conductivity �2s rises asymptotically to some �nite

value in the same limit [25, Eq. (3.125)]. The behavior of �2s , which can be calculated using the

BCS theory, is due to the �lm�s inductive reactance XL , which in turn arises from its inductance

(per square element of the �lm) L. These three parameters are related to one another by

1

�2sd
= XL = !L . (188)

For a superconducting �lm at temperatures su¢ ciently near T = 0 (e.g., in the milli-Kelvin range for

a Pb �lm) and for frequencies lower than !gap , the ohmic dissipation of the �lm will be exponentially

suppressed by the Boltzmann factor, so that one can, to a good approximation, set �1s = 0 and

99



rewrite (186) as [42]:

Rs =

(
1 +

�
2
XL

Z0

�2)�1
. (189)

The two previous expressions allow us to de�ne an �upper roll-o¤ frequency�!r for the re�ection

of EM waves from a superconducting �lm, i.e., the frequency at which re�ectivity drops to 50%

(when the �lm is kept at nearly T = 0 and when ! < !gap):

!r = �
Z0
2L

, (190)

where we discard the negative solution as being unphysical. The �lm�s lower roll-o¤ frequency is

simply determined by its lateral dimensions, which for mirror-like behavior to occur must be, as

noted before, much larger than the wavelength � = (2�c) =! of the incident EM wave. Because the

upper roll-o¤ frequency is our primary concern, we refer to it throughout as the roll-o¤ frequency.

Unlike the lower roll-o¤ frequency, it depends on the intrinsic properties of the material and cannot

be adjusted at will by altering the lateral dimensions of the �lm.

The physical meaning of the expression for !r given in (190) is that a superconducting �lm whose

dissipative conductivity has been exponentially frozen out can �short out�and thus specularly re�ect

an incoming EM wave whose frequency is below !gap , as long as the �lm�s inductance is su¢ ciently

small to allow non-dissipative supercurrents to �ow at frequencies less than !gap . As happens with

an RF choke, a large inductance will prevent supercurrents from being established inside the �lm.

Thus, the roll-o¤ frequency and re�ectivity will be lowered to levels on par with those of a normal

metal.

From (190) it is clear that the possibility of specular re�ection of EM waves by a superconduct-

ing �lm at low temperatures and frequencies depends crucially on the �lm�s inductance L. The

inductance will have two components: a magnetic inductance Lm due to the magnetic �elds created

by the charge supercurrents carried by the Cooper pairs, and a kinetic inductance Lk due to the

inertial mass of the same Cooper pairs, which causes them to oppose the accelerating force of the

100



external electric �eld [25, pp. 88, 99][26]. As it happens, Lm is numerically negligible compared to

Lk for a thin �lm (see Appendix 6A), so that we can proceed under the assumption that L �= Lk .

When T � Tc and ! � !gap , the BCS theory yields the following relation between the imaginary

part of a superconducting �lm�s complex conductivity �2s and its normal conductivity �n [25, Eq.

(3.125a)]:

�2s =
��

~!
�n . (191)

From the Drude model of metallic conductivity, it follows [43] that a �lm of thickness d will have a

normal conductivity �n given by

�n =
nee

2d

mevF
, (192)

where e is the charge of the electron, me is its mass, vF is its Fermi velocity, and ne is the number

density of conduction electrons. Then �2s becomes

�2s =
��

~!
� nee

2d

mevF
, (193)

from which it follows that the kinetic inductance can be expressed as

Lk =
1

!�2sd
=
1

d2
� ~vF
��

� me

nee2
. (194)

The 1=d2 term in (194) indicates a dependence on the �lm�s thickness, whereas the presence of

~vF=�� implies an additional dependence on the coherence length �0; since according to the BCS

theory

�0 =
~vF
��

. (195)

The me=nee
2 term could be interpreted as the London penetration depth �L , since

�0�
2
L =

me

nee2
. (196)
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However, in the present context it is more appropriate to relate this term to the plasma frequency

!p by

�0
c2

!2p
=

me

nee2
, (197)

since the Cooper pairs within a superconductor can be regarded as a type of quantum mechanical,

collisionless plasma [44]. We are, after all, concerned not with the screening of DC magnetic �elds

through the Meissner e¤ect, but with the re�ection of EM radiation �with an electrodynamic e¤ect

rather than a magnetostatic one. In the limit of ! � !p ; the plasma skin depth �p (the depth to

which an EM wave with a frequency ! can penetrate into a plasma) is simply

�p =
c

!p
, (198)

so that in this limit

�0�
2
p =

me

nee2
: (199)

Comparing (199) with (196), we see that the electrodynamic concept of the plasma skin depth and

the magnetostatic limit given by the London penetration depth coincide not just in the stronger

limit of ! ! 0 but also in the weaker limit of ! � !p .

In light of these considerations, we can re-express the kinetic inductance Lk (194) in terms of the

permeability of free space �0, the coherence length �0, the plasma skin depth �p , and the thickness

of the �lm d:

Lk = �0�0

�
�p
d

�2
. (200)

It is then possible to express Lk in more familiar form, i.e., as the product of the magnetic perme-

ability of free space and the kinetic inductance length scale lk :

Lk = �0lk , (201)
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where lk is

lk = �0

�
�p
d

�2
. (202)

(For a comparison of this BCS-based derivation of lk with one based on plasma concepts, see Ap-

pendix 6B.)

We can now rewrite the �lm�s inductive reactance XL in terms of the frequency of the incident

EM wave !, the permeability of free space �0, and the kinetic inductance length scale lk :

XL = !Lk = !�0lk . (203)

Returning to the crucial ratio of the inductive reactance to the characteristic impedance of free space

given earlier in (190), we see that the roll-o¤ frequency becomes

!r =
Z0
2Lk

=
�0c

2�0lk
=

c

2lk
. (204)

Notice that �0 cancels out of the numerator and denominator of this expression, so that the specular

re�ection of an EM wave with frequency ! from a superconducting �lm at temperatures su¢ ciently

near T = 0 depends only on the ratio of the speed of light c to the kinetic inductance length scale

lk .

To make this claim concrete, let us consider here (and in subsequent examples) the case of a thin

lead (Pb) �lm with a thickness of d = 2 nm and an angular frequency for the incident radiation of

! = 2� � (6 GHz). The known values for the coherence length and the London penetration depth

of Pb are �0 = 83 nm and �p = �L = 37 nm, respectively [45, p. 24]. Inserting these values into

(202), we see that lk � 30 �m and, from (204), that !r � 2� � (800 GHz). When we recall that the

theoretically calculated gap frequency for superconducting Pb at T = 0 is approximately 2� � (500

GHz), we see that our estimate of !r is roughly equivalent to the claim that ! < !gap for specular

re�ection to occur, which is consistent with previously stated assumptions (and with the requirement

that ! � !p , since !p � 2�� (1:3 PHz) for Pb).
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The analysis presented in this section is in basic agreement with the experiments of Glover and

Tinkham [24], and it belies the commonly held misconception that specular re�ection can occur

only when the thickness of the material d is greater than its skin depth �p (or penetration depth

�L). Re�ection from a superconducting �lm is due not to the gradual diminishment of the radiation

�eld as it enters the �lm but to the destructive interference between the incident radiation and the

radiation emitted in the forward scattering direction by the sheet supercurrents set up within the

�lm. In fact, a closer examination of (202) and (204) reveals that appreciable re�ection of a 6 GHz

EM wave can occur from a Pb �lm � a type I superconductor � even when the �lm�s thickness

is as much as 2 orders of magnitude smaller than its characteristic penetration depth. A type II

superconductor, on the other hand, will generate considerable losses, due to the ohmic or dissipative

�ux-�ow motion of Abrikosov vortices at microwave frequencies, and will therefore exhibit much

poorer re�ectivities in the microwave region.

What does the foregoing analysis imply about the ability of a superconducting �lm to re�ect a

GR microwave? In order to answer this question we must determine the magnitude of the kinetic

inductance length scale in the GR case. First, however, we will take a moment to motivate the idea

of the �characteristic gravitational impedance of free space�and to consider why objects made of

normal matter are such poor re�ectors of GR waves.
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6.6 The Gravitational Characteristic Impedance of Free Space

Wald [46, Section 4.4] has introduced an approximation scheme that leads to a useful Maxwell-like

representation of the Einstein equations of general relativity. The resulting equations describe the

coupling of weak GR �elds to slowly moving matter. In the asymptotically �at spacetime coordinate

system of a distant inertial observer, the four equations in SI units are

r �EG = �
�G
"G

(205a)

r�EG = �
@BG
@t

(205b)

r �BG = 0 (205c)

r�BG = �G

�
�jG + "G

@EG
@t

�
(205d)

where the gravitational analog of the electric permittivity of free space is given by

"G =
1

4�G
= 1:2� 109 SI units (206)

and the gravitational analog of the magnetic permeability of free space is given by

�G =
4�G

c2
= 9:3� 10�27 SI units. (207)

The value of "G is �xed by demanding that Newton�s law of gravitation be recovered from the Gauss-

like law (205a), whereas the value of �G is �xed by the linearization procedure from Einstein�s �eld

equations. These two constants express the strengths of the coupling between sources (i.e., of masses

and mass currents, respectively) and gravitational �elds, and are analogous to the two constants "0

(the permittivity of free space) and �0 (the permeability of free space), which express the strengths

of coupling between sources (charges and charge currents, respectively) and electromagnetic �elds

in Maxwell�s theory.

In the above set of equations, the �eld EG is the gravito-electric �eld, which is to be identi�ed
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with the local acceleration g of a test particle produced by the mass density �G , in the Newtonian

limit of general relativity. The �eld BG is the gravito-magnetic �eld produced by the mass current

density jG and by the gravitational analog of the Maxwell displacement current density "G@EG=@t of

the Ampere-like law (205d). The resulting magnetic-like �eld BG can be regarded as a generalization

of the Lense-Thirring �eld of general relativity. Because these equations are linear, all �elds will

obey the superposition principle not only outside the source (i.e., in the vacuum), but also within

the matter inside the source, provided the �eld strengths are su¢ ciently weak and the matter is

su¢ ciently slowly moving. Note that the �elds EG and BG in the above Maxwell-like equations will

be treated as classical �elds, just like the �elds E and B in the classical Maxwell�s equations.

As noted earlier, Cooper pairs cannot freely fall along with the ionic lattice in response to an

incident GR wave because the UP forbids such pairs from having classical trajectories, i.e., from

traveling along geodesics. An incident �eld EG will therefore cause the Cooper pairs to undergo

non-geodesic motion, in contrast to the geodesic motion of the ions inside the lattice. This entails

the existence of mass currents (as well as charge currents) from the perspective of a local, freely

falling observer who is located near the surface of the superconducting �lm anywhere other than at

its center of mass. These mass currents will be describable by a gravitational version of Ohm�s law

jG (!)= �s,G (!)EG-inside(!) , (208)

where jG (!) is the mass-current density at frequency !, �s,G (!) = �1s,G (!)+i�2s,G (!) is the complex

mass-current conductivity of the �lm at the frequency ! in its linear response to the �elds of the

incident GR wave, and EG-inside(!) is the driving gravito-electric �eld inside the �lm at frequency

!. The existence of these mass currents can also be inferred from DeWitt�s minimal coupling

rule for superconductors ([15]; see Section 6.8 below). The real part of the mass conductivity,

�1s,G (!), describes the superconductor�s dissipative response to the incident gravito-electric �eld,

while the imaginary part, �2s,G (!), describes its non-dissipative response to the same �eld. The basic

assumption behind (208) is that the mass-current density in any superconductor responds linearly
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to a weak GR wave at the driving frequency [47]. One should view �s,G as a phenomenological

quantity, which, like the electrical conductivity �s , must be experimentally determined. In any case,

the resulting optics for weak GR waves will be linear, just like the linear optics for weak EM waves.

An important physical property follows from the above Maxwell-like equations, namely, the

characteristic gravitational impedance of free space ZG [36, 48, 49]:

ZG =

r
�G
"G

=
4�G

c
= 2:8� 10�18 SI units. (209)

This quantity is a characteristic of the vacuum, i.e., it is a property of spacetime itself, and it

is independent of any of the properties of matter per se. As with Z0 =
p
�0="0 = 377 ohms in

the EM case, ZG =
p
�G="G = 2:8 � 10�18 SI units will play a central role in all GR radiation

coupling problems. In practice, the impedance of a material object must be much smaller than

this extremely small quantity before any signi�cant portion of the incident GR-wave power can be

re�ected. In other words, conditions must be highly unfavorable for dissipation into heat. Because

all classical material objects have extremely high levels of dissipation compared to ZG , even at very

low temperatures, they are inevitably very poor re�ectors of GR waves [39, 49]. The question of GR-

wave re�ection from macroscopically coherent quantum systems such as superconductors requires

a separate analysis due to the e¤ectively zero resistance associated with superconductors, i.e., the

dissipationlessness exhibited by matter in this unique state, at temperatures near absolute zero.
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6.7 A Criterion for the Specular Re�ection of GRWaves from Supercon-

ducting Films

In the case of EM waves considered above in Section 6.5, the BCS framework led us to two related

expressions for the behavior of a superconducting thin �lm, one for its EM re�ectivity (189) and

one for its EM roll-o¤ frequency (190). Now, on the basis of the similarity of the Maxwell and the

Maxwell-like equations, the identicality of the boundary conditions that follow from these equations,

and the linearity of weak GR-wave optics that follows from the gravitational version of Ohm�s law

for superconductors (208), we are led to the following two expressions for the re�ectivity and the

roll-o¤ frequency in the GR sector, which are analogous to (189) and (190), respectively:

RG =

(
1 +

�
2
XL,G

ZG

�2)�1
(210a)

!r,G = �
ZG
2LG

. (210b)

Once again, we exclude the negative solution in the expression for the upper roll-o¤ frequency given

in (210b) as being unphysical.

Pausing for a moment to consider the lower roll-o¤ frequency, it is found that a new constraint

appears. The H-C e¤ect, which is ultimately responsible for the mirror-like behavior of the �lm in

the GR case, can only be presumed to operate when

! � 2�vs
a

, (211)

where ! is the frequency of the incident wave, vs is the speed of sound in the medium, and a is the

transverse size of a square �lm. The physical signi�cance of this constraint becomes apparent when

we rewrite it as

a � 2�vs
!

. (212)
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This form of the inequality follows from the fact that neighboring ions separated by a distance less

than (2�vs) =! will be mechanically coupled to one another, since there will be su¢ cient time for

a mechanical signal to propagate from one to the other. Only ions separated by distances greater

than (2�vs) =! can be legitimately regarded as separately undergoing free fall in the presence of a

GR wave. Ultimately, however, this additional constraint is preempted by the inequality already

introduced in Section 6.3,

a � 2�c

!
, (213)

where (2�c) =! is the wavelength of the incident wave, since this more stringent requirement must

be met for the �lm to function as a mirror at all.

Returning to the expression for the upper roll-o¤ frequency given in (210b), is it conceivable that

this expression could yield a non-negligible !r,G in the case of a superconducting �lm? We begin by

noting that the gravitational impedance of free space ZG can be expressed as

ZG = �Gc . (214)

In light of (210b) and the smallness of �G , as indicated earlier in (207), it would seem highly unlikely

that a superconductor�s GR inductance would be small enough to produce a non-negligible roll-o¤

frequency. Any attempt to construct laboratory-scale mirrors for GR waves would appear to be

doomed from the start. However, as with L for a thin �lm in the electromagnetic case, LG must

be expressible as the product of the permeability and a length scale. In the GR case, we must

use the analogous gravitational version of each parameter. We will neglect the contribution of the

gravito-magnetic inductance Lm,G to the overall gravitational inductance LG on the grounds that it

will be much smaller than the gravito-kinetic inductance Lk,G (again, see Appendix 6A), so that

LG � Lk,G = �G lk,G : (215)

Inserting (214) and (215) into (210b), we see that the permeability cancels out of the numerator
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and denominator as before, so that !r,G depends only on the ratio of the speed of light c to a single

parameter �in this case, the gravitational kinetic inductance length scale lk,G :

!r,G =
�Gc

2�G lk,G
=

c

2lk,G
. (216)

In the electromagnetic case, lk was given by

lk = �0

�
�p
d

�2
, (217)

where the plasma skin depth �p was given by

�p =

r
me

�0nee
2
: (218)

In the present context, the coherence length �0 and the thickness of the �lm d must remain the same,

since they are internal properties of the �lm having nothing to do with the strength of coupling to

external radiation �elds. By contrast, the plasma skin depth would appear to depend on the strength

of coupling to external radiation �elds through the presence of �0 and e
2 in the denominator of (218).

We therefore need to consider the magnitude of this parameter in the gravitational sector.

For the moment, let us assume that the coupling of Cooper pairs to a GR wave depends solely

on their gravitational mass 2me , i.e., that their electrical charge 2e is irrelevant to the gravitational

plasma skin depth and thus to the gravitational kinetic inductance length scale of a superconducting

�lm. Ultimately, we will reject this approach, since the Coulomb interaction between the supercon-

ductor�s Cooper pairs and the corresponding holes created in the virtual plasma excitation induced

within the �lm is crucial for understanding how the �lm responds to a GR wave. Nonetheless, it

is instructive to ignore all considerations of charge and to presume, for the moment, that Cooper

pairs react to a GR wave solely on the basis of their mass. In fact, the criterion presented at the end

of this section may well be valid for neutral super�uids (e.g., super�uid helium or a neutral atomic
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Bose-Einstein condensate), but we show in the following section that it must be modi�ed in the case

of superconductors to account for the H-C e¤ect.

To obtain the �gravitational�version of the plasma skin depth �p,G , let us make the following

substitution

e2

4�"0
! Gm2

e (219)

in the expression for the plasma skin depth �p (218). Note that for this substitution to be valid, we

must treat the electrons as if they were electrically neutral. The �gravitational�kinetic inductance

length scale then becomes

lk,G = �0

�
�p,G
d

�2
, (220)

where; in this spurious approach, �p,G is given by

�p,G =

s
1

�Gneme
: (221)

Assuming here and in subsequent calculations an estimate of n = ne=2 � 1030 m�3 for the number

density of Cooper pairs, one �nds that �p,G is on the order of 1013 m, which leads to a value for lk,G

on the order of 1036 m. Inserting this enormous value for lk,G into (216) yields a roll-o¤ frequency

!r,G of e¤ectively zero, which of course undermines any practical possibility of GR-wave re�ection.

On the grounds that one must eliminate dissipation into heat for the GR-wave scattering cross-

section to become comparable to a square wavelength, Weinberg has suggested in his discussion

of Weber-style resonant bar detectors that super�uids might function e¤ectively as mirrors for GR

waves [39]. The analysis presented here, however, suggests that neutral super�uids cannot substan-

tially re�ect GR waves because of the electrical neutrality of their mass carriers. (See Appendix 6C

for a brief account of the relation between the �impedance�argument of the previous section and

Weinberg�s analysis of the dissipation problem.) As we shall see, the fact that a superconductor�s

mass carriers are not electrically neutral utterly changes the dynamics of the interaction.
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6.8 The Specular Re�ection of GR Waves

In Section 6.3, we argued that the Uncertainty Principle delocalizes a superconductor�s Cooper pairs

within the material, so that they must exhibit non-geodesic motion rather than the decoherence-

induced geodesic motion exhibited by all localized particles, such as freely �oating �dust particles�

or the ions in the lattice of a superconductor. The non-localizability of the Cooper pairs within a

superconducting �lm leads to charge supercurrents inside the �lm, which, by charge conservation

and the accumulation of charge at its edges, must produce a Coulomb electric �eld inside the �lm

in a virtual plasma excitation of the material. As a result, enormous Coulomb forces will be created

between the �lm�s negatively charged Cooper pairs and its corresponding, positively charged holes.

In the GR case, one might think to replace the Coulomb force with the much weaker Newtonian

gravitational force �as we did in the previous section �but this amounts to treating the Cooper pairs

and holes as if they were electrically neutral, which is patently unphysical. There can be no H-C

e¤ect in the case of a neutral super�uid, but the situation is entirely di¤erent for a superconductor.

This e¤ect, which can appear inside a superconductor, causes a superconducting �lm to respond

extremely �sti­ y�to an incident GR wave and leads to hard-wall boundary conditions for the wave.

To put the point di¤erently, the sti¤ness of a superconducting �lm in its response to an incoming

GR wave is governed by the strength of the Coulomb interaction between the Cooper pairs and the

corresponding holes, and not by their much weaker gravitational interaction. This fact is re�ected

in the appearance of the electromagnetic plasma frequency in the formulas derived below.

Let us begin our analysis of the magnitude of the H-C e¤ect by examining the quantum proba-

bility current density j. This quantity is more basic than the charge current density je = nqv or the

mass current density jG = nmv, since one can derive j directly from quantum mechanics. It should

be regarded as the cause of the charge and mass currents, whereas je and jG should be regarded as

the e¤ects of j.
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Recall that in non-relativistic quantum mechanics j is given by

j =
~
2mi

( �r �  r �) ; (222)

wherem is the mass of the non-relativistic particle whose current is being calculated (herem = 2me)

and  is the wavefunction of the system (here the Cooper pair�s �condensate wavefunction�, or

London�s �macroscopic wavefunction�, or Ginzburg and Landau�s �complex order parameter�). This

quantum mechanical quantity satis�es the continuity equation

r � j+@�
@t
= 0 , (223)

where � =  � is the quantum probability density of the Cooper pairs. The meaning of (223) is

that probability is conserved.

Now let us adopt DeWitt�s minimal coupling rule [15] and make the following substitution for

the momentum operator:

p! p� qA�mh or (224a)

~
i
r ! ~

i
r� qA�mh , (224b)

where q = 2e, m = 2me, A is the electromagnetic vector potential, and h is DeWitt�s gravita-

tional vector potential [50] (here and henceforth the dependence on space and time (r; t) of all

�eld quantities will be suppressed as understood). In what follows, both A and h �elds will be

treated as classical �elds, whereas j and � will be treated as time-dependent quantum operators, in

a semi-classical treatment of the interaction of radiation with matter.

We shall also follow DeWitt in adopting the radiation gauge conditions for bothA and h, namely,

that

r �A = 0 and r � h = 0 , (225)
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and that the scalar potentials for both the EM and GR �elds vanish identically everywhere. This

choice of gauge means that the coordinate system being employed is that of an inertial observer

located at in�nity.

Since it is the case that

~
2mi

( �r �  r �) = 1

m
Re

�
 �
~
i
r 
�
, (226)

we can apply DeWitt�s minimal coupling rule to (226) to obtain

j =
1

m
Re

�
 �
�
~
i
r� qA�mh

�
 

�
: (227)

The continuity equation (223) is still satis�ed by (227), provided that one also applies the same min-

imal coupling rule to the time-dependent Schrödinger equation, in which the Hamiltonian becomes

H =
(p� qA�mh)2

2m
+ V ; (228)

where the �rst term on the right-hand side represents the kinetic energy operator, and V is the

potential energy operator.

In the special case of electrically-neutral, classical �dust particles�in the presence of a GR wave,

q = 0 and thus qA = 0 (as well as V = 0). The classical Hamilton�s function H(p;q) then becomes

H(p;q) =
(p�mh)2

2m
: (229)

De�ning the canonical momentum classically as p = mvcan , where vcan is the canonical velocity, it

will be the case for neutral, classical dust particles that

H =
1

2
m (vcan � h)2 = 0 or vcan = h , (230)
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as seen by a distant inertial observer, since a passing GR wave cannot impart any kinetic energy

to noninteracting, freely-falling particles. The dust particles will be carried along with space, which

follows directly from the EP.

On the other hand, when (229) is viewed as a quantum Hamiltonian operator, it implies that

neutral, quantum-mechanical particles will acquire a kinetic energy equal to 1
2mh

2 when they are

in a nonlocalizable, gap-protected, zero-momentum eigenstate (p = 0; where p is the canonical

momentum). In accord with �rst-order time-dependent perturbation theory, such particles must

remain in their ground state in the presence of a GR wave whose frequency is less than the BCS gap

frequency. They will therefore rigidly resist the stretching and squeezing of space caused by such

a wave. In other words, they will be locally accelerated through space, acquiring kinetic energy in

the process. In the case of super�uid helium, for example, in which the basic components of the

material are both electrically neutral and quantum-mechanically protected from excitations by the

roton gap, mass supercurrents will be created that carry kinetic energy extracted from the wave.

Now let us consider the case of a type I superconductor. Before the arrival of a GR wave, the

superconductor�s Cooper pairs will be in a zero-momentum eigenstate:

 = C exp(i
p0 � r
~

) where p0 = 0 . (231)

Again, in accord with �rst-order time-dependent perturbation theory, this initial wavefunction must

remain unchanged to lowest order by the radiative perturbations arising from either A or h after

the arrival of a wave whose frequency is less than the BCS gap frequency of the material. If one

evaluates (227) using the unperturbed state (231), one �nds that

j =
1

m
Re

�
 �
�
~
i
r� qA�mh

�
 

�
(232)

=
1

m
(�qA�mh) � :

115



From this one can de�ne the �quantum velocity �eld�v,

v =
j

�
=

j

 � 
, (233)

whose local expectation value is the local group velocity of a Cooper pair [51]. It thus follows that

v = � q

m
A� h (234)

inside a superconducting �lm after the arrival of a GR wave. This velocity is the kinetic velocity of

the quantum supercurrent, and not the canonical velocity of a classical dust particle given in (230),

in the sense that 12mv
2 is the local kinetic energy of the quantum supercurrent.

The generation of mass supercurrents inside a superconductor by the GR wave will also produce

charge supercurrents inside the superconductor, since q is not zero for Cooper pairs. These super-

currents will electrically polarize the superconductor, which will set up an internal A �eld �even

in the absence of any incident EM wave. Thus, the term (�q=m)A on the right-hand side of (234)

will not be zero inside a superconductor in the presence of a GR wave. Herein lies the possibility of

mirror-like re�ection of GR waves from superconducting thin �lms.

Taking the partial derivative of (234) with respect to time, and de�ning the meaning of this

derivative in the sense of Heisenberg�s equation of motion for the kinetic velocity operator v, one

obtains an operator equation of motion that has the same form as Newton�s 2nd law of motion,

namely,

m
@

@t
v =m

@2

@t2
x = ma = qE+mEG , (235)

where, by our gauge choice, E and EG inside the superconductor are related to the vector potentials

A and h, respectively, by

E = � @

@t
A and EG = �

@

@t
h . (236)

Both E and EG will be treated here as classical �elds. Following the presentation in Section 6.6,
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EG is the gravito-electric �eld that appears in the Maxwell-like equations, which is equivalent to the

acceleration g of a local, classical test particle due to gravity, in accord with the EP. The physical

interpretation of the Newton-like equation of motion (235) is that the internal E and EG �elds act

upon the charge q and the mass m, respectively, of the Cooper pairs, to produce an acceleration

�eld a of these pairs (in the sense of Ehrenfest�s theorem) inside a superconducting �lm.

For all �elds that vary sinusoidally with the same exponential phase factor exp(�i!t); (235) leads

to the following linear-response equation at the frequency !:

x = � 1

!2

� q
m
E+EG

�
: (237)

The mass current density source term in the Ampere-like law (205d) of the Maxwell-like equations

is then given by

jG = nmv = nm
@

@t
x (238)

= nm(�i!)x

= i
n

!
(qE+mEG ) :

The total force acting on a given Cooper pair under such circumstances is thus [52]

Ftot = qE+mEG , (239)

which is to say that Ftot depends on a linear combination of the internal E and EG �elds, or,

equivalently, that a superconductor will respond linearly to a su¢ ciently weak incident GR wave.

When a superconductor is operating in its linear response regime in the presence of a weak

incident GR wave, the following direct proportionalities will hold:

Ftot / E / EG : (240)
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Let us therefore de�ne a proportionality constant �; such that

Ftot = �qE . (241)

We shall call this dimensionless proportionality constant the �fractional correction factor� of the

total force acting upon a given Cooper pair, relative to a purely electrical force acting on the same

pair.

At this point, it would be customary to ignore the extremely weak gravitational forces generated

internally within the superconducting �lm. That is to say, one would normally set the gravitational

�eld EG inside the �lm identically equal to zero everywhere by declaring that � = 1, exactly. One

could then solve the essentially electromagnetic problem of virtual plasma excitations produced

inside the �lm in its linear response to a weak incident EM or GR wave.

But this simpli�cation will not su¢ ce in the present context, since we want to understand the

dynamics of the system when one takes into account the combined e¤ect of the internal electric �eld E

and internal gravito-electric �eld EG , both of which will be produced in association with the electrical

polarization of the superconductor induced by an incident EM or GR wave. Although the impact

on the electrodynamics of the system will be negligible, the impact on its gravito-electrodynamics

will be enormous. Let us then use (239) and (241) to express the relationship between the E and

EG �elds inside a superconducting �lm when � 6= 1; i.e., when the gravitational forces within the

�lm, however tiny, are explicitly taken into account:

E =
1

�� 1
m

q
EG : (242)

Substituting this expression into (238), we obtain [53]

jG = i
�

�� 1
nm

!
EG ; (243)
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from which it follows that the mass conductivity of the �lm �G is given by

�G = i

�
�

�� 1

�
nm

!
/ 1

!
, (244)

implying an inductive response to internal �elds on the part of the mass currents jG within the

�lm. Note that �G can in principle become extremely large when �! 1, and therefore that jG can

become extremely large.

Let us consider �rst the e¤ect of the gravitational force between the Cooper pairs and holes on

the plasma frequency. We start from (235) in the form

m
@2

@t2
x = �m!2x = qE+mEG=�qE , (245)

so that

x = �� q

m!2
E . (246)

The electric polarization of the superconductor will then be

P = nqx = �� nq2

m!2
E = �0p"0E , (247)

where �0p is the modi�ed plasma susceptibility. Since this susceptibility can be expressed as

�0p = �
!02p
!2

, (248)

it follows that the square of the modi�ed plasma frequency is given by

!02p = �
nq2

m"0
. (249)

We thus expect that the fractional correction factor �, which takes into account the gravitational

forces between the Cooper pairs and holes, will lead to an extremely small correction to the standard
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formula for the plasma frequency.

To determine the magnitude of �; we begin with the quantum form of Newton�s second law (235),

rewritten as

@

@t
v =

q

m
E+EG : (250)

Multiplying both sides by nq, one obtains a current-density form of the same equation:

@(nqv)

@t
=

@

@t
je =

nq2E

m
+ nqEG : (251)

Let us evaluate all quantities in this equation at a point P along the edge of the superconducting

�lm where the ionic lattice abruptly ends and the vacuum begins:

@

@t
je

����
P

=
nq2E

m

����
P

+ nqEG jP : (252)

We will assume that the incident radiation �elds that excite the Cooper-pair plasma are tightly

focused onto a di¤raction-limited Gaussian-beam spot size located at the center of the square �lm.

We will also assume that the radiative excitation is impulsive in nature, so that the plasma can

oscillate freely after the radiation is abruptly turned o¤. Thus the point P at the edge of the �lm

at which all quantities in (252) are to be evaluated, is far away from the center of the �lm, where

the incident radiation �elds can impulsively excite the �lm into free plasma oscillations.

Taking the divergence of both sides of (252), we obtain at point P

@

@t
(r � je)

����
P

=
nq2

m
(r �E)

����
P

+ nq (r �EG )jP : (253)

But with the help of the continuity equation

r � je +
@

@t
�e = 0 (254)
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and the 1st Maxwell and 1st Maxwell-like equations

r �E =�e
"0
and r �EG= �

�G
"G

, (255)

we can rewrite (253) as a di¤erential equation for the charge and mass densities at point P [54]:

� @2

@t2
�e =

nq2

m"0
�e �

nq

"G
�G : (256)

These densities will oscillate freely in time at point P at the edge of the �lm, where both charge and

mass can accumulate, after the impulsive excitation at the center of the �lm has been turned o¤.

We then use the fact that the accumulated Cooper-pair mass density at point P must be related to

the accumulated Cooper-pair charge density at point P by

�G =
m

q
�e , (257)

since each Cooper pair accumulating at the edge of the �lm carries with it both a charge q and a

mass m. Then at point P (256) becomes

� @2

@t2
�e =

nq2

m"0
�e �

nm

"G
�e , (258)

which leads to the simple harmonic equation of motion

@2

@t2
�e +

nq2

m"0
�e �

nm

"G
�e =

@2

@t2
�e + !

02
p �e = 0 , (259)

where the square of the modi�ed plasma frequency !0p is given by

!02p =

�
1� m2

q2
ZG
Z0

�
nq2

m"0
: (260)
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Here we have made use of the fact that Z0 = (c"0)
�1 and that ZG = (c"G )

�1
= 4�G=c. Comparing

(260) with (249), we arrive at the following expression for �:

� = 1� m2

q2
ZG
Z0

(261)

= 1� 4�"0Gm
2
e

e2

� 1� 1

4:2� 1042 .

The fractional correction factor � does indeed di¤er from unity by an extremely small amount, equal

to the reciprocal of the ratio of the electrostatic force to the gravitational force between two electrons

given by (166).

The implication of (261) for the electrodynamics of a superconductor is that the size of the

modi�ed plasma frequency given by (249) will be smaller than the standard value, albeit by a mere

4 parts in 1042. Although this di¤erence is extremely small, the fact that the modi�ed plasma

frequency is smaller rather than larger points to a surprising fact: the Cooper-pair holes created

inside a superconducting �lm by an incident EM or GR microwave must be gravitationally repelled

by, rather than attracted to, the corresponding Cooper pairs in the �lm, i.e., the holes must have the

equivalent of negative mass and must therefore behave analogously to buoyant bubbles inside a �uid

in the Earth�s gravity. This would be a troubling result, were it not for the fact that the holes, like

bubbles, cannot exist independently in the vacuum. The existence of negative-mass pseudo-particles

(i.e., holes) within the �lm does not imply the possibility of shielding static, longitudinal gravito-

electric �elds, which requires the existence of real particles with negative mass in the vacuum. That

is to say, the existence of these pseudo-particles does not imply the possibility of anti-gravity devices

[47].

The real signi�cance of � lies in its impact on the gravito-electrodynamics of a superconducting

�lm. In particular, the result given in (261) leads to an enhancement of the �lm�s mass conductivity

�G by the enormous factor of 4:2�1042, which is what we have been calling the Heisenberg-Coulomb
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e¤ect. Speci�cally, the expression for the mass conductivity given in (244) can now be reduced to

�G = �inq
2�

m!

Z0
ZG

, (262)

or, equivalently [55],

�1;G = 0 and �2;G = �
nq2�

m!

Z0
ZG

. (263)

Let us use this result to calculate the GR re�ectivity of a superconducting �lm.

Recall the relationship given earlier in (188) between the inductance of the �lm and its nondis-

sipative conductivity. Let us assume, once again, that the gravito-magnetic inductance is negligible

when compared to the gravitational kinetic inductance (which is justi�ed in Appendix 6A). We can

then equate the gravitational inductance of the �lm LG with Lk,G and use (218), (221), (263) to

express the latter as

Lk,G =
1

!�2;Gd
= � m

nq2�

1

d

ZG
Z0

(264)

� ��Gd
�
�p,G
d

�2
m2ZG
q2Z0

= ��Gd
�
�p
d

�2
= ��G l

0

k,G ,

where the corrected gravitational kinetic inductance length scale l0k,G is given by

l0k,G = d

�
�p
d

�2
. (265)

But this is just the EM kinetic inductance length scale lk,p that appears in the collisionless plasma

model presented in Appendix 6B. Notice that this expression di¤ers from the BCS expression given

in (202) in Section 6.5 by a factor on the order of unity, i.e., d=�0, which is due to the fact that the

plasma model knows nothing of the BCS coherence length scale. Nonetheless, the appearance of �p
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in (265) highlights the importance of plasma concepts for correcting the approach adopted at the

end of Section 6.7. The H-C e¤ect reduces the GR kinetic inductance length scale lk,G by 42 orders

of magnitude, to the level of the EM kinetic inductance length scale lk,p (� lk), thereby increasing

the magnitude of the GR roll-o¤ frequency !r,G by the same factor, to the level of the EM roll-o¤

frequency !r .

Two possible criticisms of this analysis immediately come to mind. First, the group velocity of

a Cooper pair given by (234) is predicted to be superluminal, even for extremely small values of

the dimensionless strain h+ of an incident GR wave [50]. Using (236), (238), and (243) to solve for

jv=cj, one �nds that ���v
c

��� = 1

c

�

�� 1 jhj =
1

2

�

�� 1 jh+j . (266)

Even for an arbitrarily chosen, extremely small value of jh+j � 10�40 (which, for a 6 GHz GR wave,

corresponds to an incident power �ux on the order of 10�16Wm�2), the value given in (261) leads to

a velocity roughly one hundred times the speed of light. This apparent violation of special relativity

suggests that the response of a superconductor to a GR-wave �eld will in general be nonlinear,

invalidating our assumption of linearity in (240).

However, group velocities much larger than c (in�nite, even) have been experimentally demon-

strated [56]. In particular, photon tunneling-time measurements con�rm the �Wigner�transfer time,

which is a measure of an e¤ective group velocity broadly applicable to quantum scattering processes.

Wigner�s analysis [57] assumes a linear relation between the initial and �nal states of a quantum

system, and yields a transfer time that is proportional to the derivative of the phase of the system�s

transfer function with respect to the energy of the incident particle. In the present context, this

implies that the Wigner time will be zero, since the phase of the Cooper-pair condensate remains

constant everywhere, and stays unchanged with time and energy, due to �rst-order time-dependent

perturbation theory (i.e., assuming that no pair-breaking or any other quantum excitation is allowed

[33]). Returning to Figure 7, the Wigner time implies that an observer located at the center of mass

of the superconductor who spots a Cooper pair at point B during the passage of the wave will see
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the pair disappear and then instantaneously re-appear at point A. This kind of simultaneity (as seen

by the observer at the center of mass of the system) is a remarkable consequence of quantum theory,

but it does not violate special relativity, nor does it invalidate the assumption of linearity.

We have already touched on the second criticism, namely, that the analysis presented here is

defective because it does not register the BCS gap frequency. In particular, ohmic dissipation will

occur at frequencies above the material�s BCS gap frequency [25] and will damp out the free plasma

oscillations that are otherwise predicted to occur in (260). In response, we note that these dissipative

e¤ects cannot alter the ratio given by (166) that appears in the nondissipative factor � given in (261).

Fundamentally, it is the strength of the Coulomb force, and not the strength of the gravitational

force, that dictates the strength of a superconducting �lm�s response to an incident GR wave.
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6.9 The Negligibility of Single-Bounce Transduction

It is important to address the concern that an incoming GR wave will be partially or completely

transduced into an outgoing EM wave by a superconducting �lm instead of being specularly re�ected

by the �lm. Recall that the Cooper pairs within the �lm cannot undergo free fall along with its

lattice in the presence of an incident GR wave, contrary to a naive application of the EP to all

particles. Instead, Cooper pairs must undergo non-geodesic motion, in contrast to the geodesic

motion of the ions in the �lm�s lattice. This leads to a non-zero quantum current density, one that

carries mass and charge. Therefore, time-varying mass currents and time-varying charge currents

will be generated by an incident GR wave. The latter will cause at least some of the incoming

GR-wave energy to be transduced into an outgoing EM wave. More succinctly, the �lm will behave

like an EM antenna. Appreciable transduction would be an interesting result in its own right, but

it turns out to be negligible. The transduction e¤ect is necessarily present in the interaction of a

superconducting �lm with a GR wave, but it does not undermine the �lm�s ability to specularly

re�ect the wave.

The size of the transduction e¤ect can be determined from a consideration of the charge super-

current density generated within a superconducting �lm by an incident GR wave. Let us examine

the case of a GR plane wave normally incident upon a superconducting �lm located at the plane

x = 0; in the absence of any incident EM radiation. In this situation, the charge supercurrent

generated by a GR wave will be generated as a current sheet. If a GR wave is incident upon the

�lm only from the left, say, the charge supercurrent generated in the �lm will nonetheless radiate

EM radiation symmetrically, i.e., in both the +x and �x directions. This follows from the bilateral

symmetry of the current sheet, which takes the form

je = j0�(x) exp(�i!t) (267)

around x = 0 (here and henceforth we suppress the polarization vectors of the currents and �elds
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because they are all transverse to the x axis). The current sheet will radiate by coupling, via the

Cooper pairs� charge q = 2e; to an electric �eld E = �@A=@t (in the radiation gauge) and to a

magnetic �eld B = r�A.

Having chosen the radiation gauge, in which r � A = 0 and in which the scalar potential is

identically zero everywhere, we can begin with the EM wave equation in terms of A and je :

r2A� 1

c2
@2A

@t2
= ��0je . (268)

Let us assume once again that all time variations are sinusoidal at an angular frequency !; so that

we can make the replacements

A! A exp(�i!t) and je ! je exp(�i!t) . (269)

Let us also take advantage of the symmetry inherent in the problem, so that we can reduce (268) to

a Helmholtz equation in a single dimension for the transverse amplitudes A and je :

@2A

@x2
+ k2A = ��0je = ��0j0�(x) : (270)

The delta function in (270) vanishes everywhere except at the origin x = 0; so that for all x 6= 0 this

equation becomes a 1D homogeneous Helmholtz equation

@2A

@x2
+ k2A = 0 . (271)

By the principle of causality and the bilateral symmetry of the �lm, we can then restrict the possible

solutions of this equation to outgoing plane waves symmetrically emitted from the �lm, so that

A = � exp(+ikx) for x > 0 (272a)

A = � exp(�ikx) for x < 0 (272b)
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for the same value of �, which is determined by the strength of the delta function as follows:

lim
"!0

+"Z
�"

dx

�
@2A

@x2
+ k2A

�
= lim

"!0

@A

@x

����+"
�"

= ��0j0 lim
"!0

+"Z
�"

dx�(x) = ��0j0 :

For " > 0; the derivatives of A are

lim
"!0

@A

@x

����+" = lim
"!0

(+ik� exp(+ik")) = +ik� (273)

and

lim
"!0

@A

@x

����
�"
= lim

"!0
(�ik� exp(�ik")) = �ik� . (274)

Hence

lim
"!0

@A

@x

����+"
�"
= +2ik� : (275)

Therefore, the amplitude � of the radiation �eld A emitted from the charge current sheet of strength

j0 generated by an incident GR wave is given by

� = i
1

2

�0j0
k

. (276)

For a very thin �lm of thickness d; the delta function � (x) is approximately

�(x) � 1

d
(277)

inside the �lm and zero outside, since then

d=2Z
�d=2

�(x)dx = 1 , (278)
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which implies that

� = i
1

2

Z0d

!
je . (279)

As we saw in the previous section, an incident GR wave generates within a superconducting �lm

not only an EG �eld but an internal E �eld as well. In each case, the tangential component of the

�eld must be continuous across the superconductor-vacuum interface. Since there is no incoming E

�eld, this continuity condition requires the appearance of an outgoing E �eld, which is to say that

the charge supercurrent generated by the GR wave will cause the �lm to behave like an antenna and

radiate EM waves. For the same sinusoidal time dependence exp(�i!t) of all �elds and currents,

and ignoring spatial dependence, we know that

E = � @

@t
A = i!A = i!� . (280)

Inserting (279) into this expression, we see that the relationship between the charge supercurrent je

in the current sheet and the E �eld both outside and inside the �lm will be given by

je = nqv = � 2

Z0d
E . (281)

The charge conductivity of the �lm stemming from its behavior as an EM antenna in the presence

of a GR wave is thus given by

�e = �
2

Z0d
. (282)

Now, it must be possible to re-express this charge conductivity as the real part of the complex

mass conductivity. The justi�cation for this step is that the EM radiation produced in transduction

from the incident GR wave leads to power loss from the wave that escapes to in�nity, never to

return. Hence the transduction e¤ect is a lossy process in the GR wave sector, which is no di¤erent

from any other irreversible, ohmic process, and can therefore be characterized as the real part of the

mass conductivity. Multiplying each side of (281) by m=q and using the relationship between E and
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EG given earlier in (242), one �nds that the lossy component of the mass current density jG arising

from the transduction of the incident GR wave into an EM wave is given by

jloss,G = �
2

Z0d

m2

q2
1

�� 1EG . (283)

The real part of the mass conductivity �1,G of the �lm due to the dissipative loss by transduction

into the escaping EM radiation is therefore given by

�1,G = �
2

Z0d

m2

q2
1

�� 1 =
2

ZGd
, (284)

where we have taken advantage of the fact that

�� 1 =
�
1� m2ZG

q2Z0

�
� 1 = �m

2ZG
q2Z0

. (285)

We can now use (284) in conjunction with the nondissipative conductivity �2;G given in (263)

�2,G = ��
nq2

m!

Z0
ZG

(286)

to determine whether loss into EM radiation will undermine the possibility of GR-wave re�ection.

We begin by recalling that the full version of the GR-re�ection formula is given by

RG =

8<:
 
1 + 2

�1;G
�21;G + �

2
2;G

1

ZGd

!2

+

 
2

�2;G
�21;G + �

2
2;G

1

ZGd

!29=;
�1

. (287)

Now let us de�ne the parameter �; which is the dimensionless ratio of the squares of the two mass
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conductivities given in (284) and (286)

� �
�
�1,G
�2,G

�2
=

�
2m!

�nq2Z0d

�2
(288)

=

�
2

�

!d
!02
p
!

�2
,

where !
0

p is the modi�ed plasma frequency (249) and !d = �c=d is a characteristic frequency

associated with the thickness of the �lm d (i.e., the resonance frequency for its lowest standing-wave

mode). In general, it will be the case that � is much less than unity when the frequency of the

incident wave is

! � �

2

!
02
p

!d
= 1:1� 1016 rad s�1. (289)

The microwave frequencies of interest fall well below this limit, so we can simplify (287) to

RG =

8<:
 
1 + 2

�1;G
�22;G

1

ZGd

!2

+

�
2
1

�2;G

1

ZGd

�2)�1
. (290)

We can then substitute (284) and (286) into (290) to obtain

RG = f(1 + �)2 +�g�1 . (291)

For ! = 2� � (6 GHz), we see from (288) that

� = 1:3� 10�11 (292)

and thus that

RG � (1 + 3�)�1 =
�
1 + 3:8� 10�11

��1
, (293)

which implies a re�ectivity very close to unity. Thus the dissipation (i.e., transduction) of an incident
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GR wave in the form of outgoing EM radiation will not interfere with the �lm�s ability to specularly

re�ect GR waves.

As a check on this conclusion, let us examine the ratio � of the power lost in the form of outgoing

EM radiation to the power re�ected in the form of outgoing GR radiation, using the reasonable

assumption that the �lm acts as a current source in both sectors. Thus,

� =
hPEM i
hPGRi

=



I2e
�
Z0

hI2G iZG
=

D
I2loss,G

E
ZG

hI2G iZG
(294)

=

D
I2loss,G

E
hI2G i

=

D
j2loss,G

E
hj2G i

=
�21,G
�22,G

= � .

The value for � given in (292) implies that a negligible fraction of the power of the incoming GR

microwave will be lost through transduction into an outgoing EM wave. A superconducting �lm at

temperatures su¢ ciently near T = 0 will indeed be a highly re�ective mirror for GR microwaves but

a highly ine¢ cient transducer of GR microwaves into EM microwaves.

In the parallel case of EM-wave re�ection, we can once again take into account the possibility of

transduction by introducing a real term into the EM conductivity that corresponds to loss into the

GR sector (i.e., into an outgoing GR wave). The resulting real and imaginary parts of the complex

charge conductivity of the �lm can then be shown to be

�1 =
2

Z0d
and �2 = �

nq2

m!
, (295)

where �1 is the dissipative part of the complex charge conductivity corresponding to loss by trans-

duction into outgoing GR radiation. The �lm will radiate as a GR antenna because of the appearance

of a quadrupolar pattern of mass supercurrents (when driven by a TEM11 incident EM plane-wave

mode) that couples, via the Cooper pairs�mass m = 2me , to a gravito-electric �eld EG = �@h=@t

(in the radiation gauge) and to a gravito-magnetic �eld BG = r� h, where h is the gravitational

analog of the electromagnetic vector potential A.

In fact, (295) leads to an expression for � identical to the one given in (288). The subsequent
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analysis then proceeds unaltered, con�rming that the model developed here is also consistent with

the prediction that at temperatures su¢ ciently near T = 0 a superconducting �lm will be a highly

re�ective mirror for EM microwaves but a highly ine¢ cient transducer of EM microwaves into GR

microwaves. Importantly, this prediction is consistent with the experimental results of Glover and

Tinkham [24].
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6.10 Conservation of Energy in the Re�ection Process

Having shown that a superconducting �lm can specularly re�ect a GR wave and that transduction

will not substantially impede this behavior, we turn �nally to the question of whether the expressions

for �1,G and �2,G given above in (284) and (286) are consistent with the conservation of energy. This

basic physical principle requires that the absorptivity, re�ectivity, and transmissivity of the �lm sum

to unity:

AG +RG + TG = 1 (296)

= AGRGTG �
�

1

AGRG
+

1

AGTG
+

1

RGTG

�
.

From the analysis presented in Sections 6.4�6.7, we know that the reciprocal of the GR transmissivity

is given by

1

TG
=

�
1 +

1

2
�1;GZGd

�2
+

�
1

2
�2;GZGd

�2
(297)

and that the reciprocal of the GR re�ectivity is given by

1

RG
=

 
1 + 2

�1;G
�21;G + �

2
2;G

1

ZGd

!2
(298)

+

 
2

�2;G
�21;G + �

2
2;G

1

ZGd

!2
.

We can determine the reciprocal of the GR absorptivity AG by considering the work done by a

gravito-electric �eld EG to move a mass m by an in�nitesimal displacement dx:

dW = F � dx = mEG � dx . (299)

The rate of work being done, i.e., the instantaneous power P delivered by the �eld to the mass, is

P = F � dx
dt
= mEG �

dx

dt
. (300)
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Let n be the number density of mass carriers moving with velocity

v =
dx

dt
, (301)

so that the mass current density jG is

jG = nmv . (302)

Then the instantaneous power delivered by the �eld to the mass carriers per unit volume moving in

a small volume V is

P = P

V
= nmEG �

dx

dt
= jG �EG , (303)

where jG and EG are real quantities. Let us, however, generalize this expression and represent the

current and �eld by the complex quantities

jG=j0;G exp(�i!t) and (304a)

EG=E0;G exp(�i!t) . (304b)

Then

Re jG=
1

2

�
j0;G exp(�i!t) + j�0;G exp(i!t)

�
(305)

and

ReEG=
1

2

�
E0;G exp(�i!t) +E�0;G exp(i!t)

�
. (306)

The real instantaneous power per unit volume expressed in terms of this complex current and �eld

is given by

P = Re jG � ReEG (307)

=
1

2

�
j0;G exp(�i!t) + j�0;G exp(i!t)

�
�

1

2

�
E0;G exp(�i!t) +E�0;G exp(i!t)

�
.
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But the time average over one wave-period T = 2�=! of each second harmonic term in this expression

vanishes because

1

T

TZ
0

dt [j0;G �E0;G exp(�2i!t)] = 0 (308a)

1

T

TZ
0

dt
�
j�0;G �E�0;G exp(+2i!t)

�
= 0 , (308b)

leaving only the DC cross terms

hPi = 1

4

�
j0;G �E�0;G + j�0;G �E0;G

�
, (309)

which can be re-expressed as

hPi = 1

2
Re(j�G �EG ) . (310)

Let us apply this result for the time-averaged power density to a superconducting �lm by recalling

that the relevant gravito-electric �eld is the �eld inside the �lm, so that

hPi = 1

2
Re(j�G �EG-inside), (311)

where the gravitational analog of Ohm�s law is

jG = �GEG-inside . (312)

Therefore,

hPi = 1

2
(Re��G ) (E

�
G-inside �EG-inside) (313)

=
1

2
Re (�1;G � i�2;G ) jEG-inside j2

=
1

2
�1;G jEG-inside j2 .
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As in the electromagnetic case discussed in Section 6.4, the gravito-electric �eld inside the �lm will

be related to the incident gravito-electric �eld as follows:

EG-inside = (1� rG )EG-incident (314)

= tGEG-incident

= EG-transmitted ,

where rG is the amplitude re�ection coe¢ cient and tG is the amplitude transmission coe¢ cient.

Thus the time-averaged power dissipated inside the entire volume Ad of the �lm, where A is its area

(an arbitrarily large quantity) and d is its thickness, is given by

hPiAd = 1

2
�1;G t

�
G tG jEG-incident j

2
Ad (315)

=
A�1;Gd

2
TG jEG-incident j2 ,

where TG = t�G tG is the transmittivity of the �lm.

The magnitude of the time-averaged Poynting vector of the incident wave traveling in the direc-

tion k̂ is given by an expression similar to (310), viz.,

hSi = 1

2
k̂ � Re (E�G-incident �HG-incident) (316)

=
1

2

1

ZG
Re(E�G-incident �EG-incident)

=
1

2ZG
jEG-incident j2 ,

from which it follows that the power incident on the area A of the �lm is

hSiA = 1

2ZG
jEG-incident j2A . (317)

Thus the absorptivity AG , which is the ratio of the time-averaged power dissipated inside the �lm
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to the time-averaged power incident on the �lm, is given by

AG =
hPiAd
hSiA = TG�1;GZGd . (318)

Inserting the reciprocal of (297) for TG into (318) and taking the reciprocal of the new expression,

we �nd that

1

AG
=
(1 + 1

2�1;GZGd)
2 + ( 12�2;GZGd)

2

�1;GZGd
. (319)

A calculation con�rms that the expressions given in (297), (298), and (319) are in fact consistent

with the requirement that the absorptivity, re�ectivity, and transmissivity sum to unity. When we

insert (297), (298), and (319) into the right-hand side of (296), we obtain a single equation with two

variables, �1,G and �2;G : Thus the conservation of energy in the case of the interaction between a

GR wave and a superconducting �lm depends solely on the relation between �1,G and �2;G .

Recalling the parameter � introduced in (288), which characterizes the relation between �1,G

and �2;G , we can re-express the reciprocals of AG ; RG , and TG as

1

AG
= 2 +

1

2�
(320a)

1

RG
=
2�2 + 10�3 + 8�4

2�2 + 4�3 + 2�4
(320b)

1

TG
= 4 +

1

�
. (320c)

One then �nds that

AGRGTG =
2�2 + 4�3 + 2�4

1 + 13� + 60�2 + 112�3 + 64�4
(321)

and that

(
1

AGRG
+

1

AGTG
+

1

RGTG
) = (322)

1 + 13� + 60�2 + 112�3 + 64�4

2�2 + 4�3 + 2�4
.
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But these two expressions are just the reciprocals of one another, con�rming (296) in the GR case.

In the EM case, the corresponding real and imaginary parts of the complex charge conductivity

are given by

�1 =
2

Z0d
(323)

�2 = �
nq2

m!
. (324)

The fact that the ratio of the squares of these two conductivities is once again

�
�1
�2

�2
=

4m2!2

�2n2q4Z20d
2
= � (325)

is a strong hint that (296) will be similarly satis�ed in the EM case. In fact, the expressions given

above for 1=AG ; 1=RG ; and 1=TG in (320) carry over without alteration into the EM case, so that

the subsequent steps of the derivation proceed exactly as above. Consequently, we can say that the

formalism presented here obeys energy conservation both in the case of GR re�ection with EM loss

and in the case of EM re�ection with GR loss. This is a strong self-consistency check of the entire

calculation.
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6.11 Experimental and Theoretical Implications

Most of the experiments presently being conducted on gravitational radiation aim to passively detect

GR waves originating from astrophysical sources. The specular re�ection of GR waves at microwave

frequencies from superconducting thin �lms due to the Heisenberg-Coulomb e¤ect would allow for

a variety of new experiments, all of which could be performed in a laboratory setting and some of

which would involve mesoscopic quantum objects. Here we identify several such experiments that

should be technologically feasible, commenting brie�y on their interrelations and broader theoretical

implications.

Consider �rst a conceptually simple test of the physics behind the Heisenberg-Coulomb e¤ect

itself. In this experiment, two horizontally well-separated, noninteracting superconducting bodies

are allowed to fall freely in the non-uniform gravitational �eld of the Earth. The tidal forces acting

on the two bodies, which are like the tidal forces caused by a low-frequency GR wave, cause them

to converge as they fall freely toward the center of the Earth. Although the gap-protected, global

quantum mechanical phase of the Cooper pairs forces each pair to remain motionless with respect to

the center of mass of its own body, this does nothing to prevent the two bodies from converging during

free fall. The trajectories of these two superconducting bodies �recall that they have decohered due

to interactions with their environment and are therefore spatially well separated �must be identical

to those of any two noninteracting, freely falling massive bodies, in accord with the EP.

Now connect the two bodies by a thin, slack, arbitrarily long, superconducting wire, so that they

become a single, simply-connected, coherent superconducting system. From a mechanical point

of view, the negligible Hooke�s constant of the wire allows each body to move freely, one relative

to the other. In this case, the characteristic frequency of the interaction between the bodies and

the gravitational �eld, which is given by the inverse of the free-fall time, is far below the BCS gap

frequency and far above the simple harmonic resonance frequency of the two-bodies-plus-wire system.

According to �rst-order time-dependent perturbation theory, then, the nonlocalizable Cooper pairs

of the two coherently connected bodies must remain motionless with respect to the center of mass of
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the entire system, as seen by a distant inertial observer. This follows, as we have argued in Section

6.3, from the gap-protected, global, quantum mechanical phase of the Cooper pairs, which is at root

a consequence of the UP. On the other hand, the ions of the two coherently connected bodies will

attempt to converge toward each other during free fall, since they want to follow geodesics in accord

with the EP.

In this experimental �tug-of-war�between the Uncertainty Principle and the Equivalence Prin-

ciple, which principle prevails? When the temperature is low enough to justify ignoring the e¤ect

of any residual normal electrons (i.e., when the temperature is less than roughly half the critical

temperature, so that the BCS gap is su¢ ciently close to its value at absolute zero [25]), we believe

the EP will be completely overcome by the UP. This must be the case because the charge separation

that would otherwise result as the ions converged while the Cooper pairs remained motionless (with

respect to a distant inertial observer) would generate an unfavorable, higher-energy con�guration

of the system. The quantum mechanical Cooper pairs must drag the classical ionic lattice into co-

motion with them, so that the coherently connected bodies depart from geodesic motion. That is to

say, the bodies must maintain a constant distance from one another as they fall. If two coherently

connected superconducting bodies were to converge like any two noninteracting bodies, one would

have to conclude that the UP had failed with respect to the EP, i.e., that the EP is more universal

and fundamental in its application to all objects than the UP. We do not believe this to be the case.

Theories that propose an �intrinsic collapse of the wavefunction�or �objective state reduction,�

through some decoherence mechanism, whether by means of a stochastic process that leverages the

entanglement of object and environment (as originally proposed by Ghirardi, Rimini, and Weber

[58]), or by means of a su¢ ciently large change in the gravitational self-energy associated with

di¤erent mass con�gurations of a system (as proposed by Penrose [59]), would imply the failure

of the Superposition Principle, and thus of the Uncertainty Principle, in the experiment outlined

above. The existence of any such mechanism would destroy the Heisenberg-Coulomb e¤ect, but it

would also pose a serious problem for any quantum theory of gravity.
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A straightforward geometrical calculation for the free-fall experiment outlined above shows that

the convergence of two noninteracting massive bodies initially separated by several centimeters would

be on the order of microns for free-fall distances presently attainable in aircraft-based zero-gravity

experiments. Though small, this degree of convergence is readily measurable by means of laser

interferometry. The exact decrease, if any, in the convergence measured for two coherently connected

superconducting bodies, relative to the decrease measured for the same two bodies when the coherent

connection is broken, would allow one to measure the strength of the Heisenberg-Coulomb e¤ect,

with null convergence corresponding to maximal de�ection from free fall.

The specular re�ection of GR waves from superconducting �lms, which we have argued follows

from the Heisenberg-Coulomb e¤ect (see Section 6.8), might also allow for the detection of a gravi-

tational Casimir-like force (we thank Dirk Bouwmeester for this important suggestion). In the EM

case, an attractive force between two nearby metallic plates is created by radiation pressure due to

quantum �uctuations in the EM vacuum energy. If the two plates were made of a type I super-

conducting material, it should be possible to detect a change in the attractive force between them,

due to the additional coupling of the plates to quantum �uctuations in the GR vacuum energy, as

the plates were lowered through their superconducting transition temperature. Observation of the

gravitational analog of the Casimir force could be interpreted as evidence for the existence of quan-

tum �uctuations in gravitational �elds, and hence as evidence for the need to quantize gravity. If no

analog of the Casimir force were observed despite con�rmation of the Heisenberg-Coulomb e¤ect in

free-fall experiments, one would be forced to conclude either that gravitational �elds are not quan-

tizable or that something other than the Heisenberg-Coulomb e¤ect is wrong with our �mirrors�

argument.

In Sections 6.9 and 6.10, we discussed the transduction of GR waves to EM waves and vice-

versa. Although we showed that transduction in either direction will be highly ine¢ cient in the case

of a single superconducting �lm, experimentally signi�cant e¢ ciencies in both directions may be

attainable in the case of a pair of charged superconductors [60]. This would lead to a number of ex-
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perimental possibilities, all of which employ the same basic apparatus: two levitated (or suspended)

and electrically charged superconducting bodies that repel one another electrostatically even as they

attract one another gravitationally. For small bodies, it is experimentally feasible to charge the

bodies to �criticality,� i.e., to the point at which the forces of repulsion and attraction cancel [60].

At criticality, the apparatus should become an e¤ective transducer of incoming GR radiation, i.e.,

it should enable 50% GR-to-EM transduction e¢ ciency. By time-reversal symmetry, it should also

become an e¤ective transducer of incoming EM radiation, i.e., it should also enable 50% EM-to-GR

transduction e¢ ciency. Chiao has previously labeled this type of apparatus a �quantum transducer�

[60].

Two variations on a single-transducer experiment could provide new and compelling, though still

indirect, evidence for the existence of GR waves. First, an electromagnetically isolated transducer

should generate an EM signal in the presence of an incoming GR wave, since the transducer should

convert half the power contained in any incoming GR wave into a detectable outgoing EM wave.

This might allow for the detection of the cosmic gravitational-wave background (CGB) at microwave

frequencies, assuming that certain cosmological models of the extremely early Big Bang are correct

[61]. If no transduced EM signal were detected despite con�rmation of the H-C e¤ect, one would be

forced to conclude either that something is wrong with the �mirrors�argument or the GR-to-EM

�transduction�argument, or that there is no appreciable CGB at the frequency of investigation.

A single quantum transducer should also behave anomalously below its superconducting transi-

tion temperature in the presence of an incoming EM wave (we thank Ken Tatebe for this important

suggestion). By the principle of the conservation of energy, an EM receiver directed at the trans-

ducer should register a signi�cant drop in re�ected power when the transducer is �turned on�by

lowering its temperature below the transition temperature of the material, since energy would then

be escaping from the system in the form of invisible (transduced) GR waves. If no drop in re�ected

power were observed despite con�rmation of GR-to-EM transduction in the experiment outlined in

the previous paragraph, one would need to reconsider the validity of the principle of time-reversal
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symmetry in the argument for EM-to-GR transduction.

Finally, if an e¢ cient quantum transducer were to prove experimentally feasible, two transducers

operating in tandem would open up the possibility of GR-wave communication. As a start, a grav-

itational Hertz-like experiment should be possible. An initial transducer could be used to partially

convert an incoming EM into an outgoing GR wave. A second transducer, spatially separated and

electromagnetically isolated from the �rst, could then be used to partially back-convert the GR wave

generated by the �rst transducer into a detectable EM wave. The same two-transducer arrangement

could also be used to con�rm the predicted speed and polarization of GR waves. Of course, wire-

less communication via GR waves would be highly desirable, since all normal matter is e¤ectively

transparent to GR radiation. Such technology would also open up the possibility of wireless power

transfer over long distances. On the other hand, if a Hertz-like arrangement were to yield a null

result despite the success of the previously outlined single-transducer experiments, one would infer

that the success of those experiments was due to something other than the existence of GR waves.

In summary, a new class of laboratory-scale experiments at the interface of quantum mechanics

and gravity follows if the argument presented here for superconducting GR-wave mirrors is correct.

Such experiments could be a boon to fundamental physics. For example, one could infer from

the experimental con�rmation of a gravitational Casimir e¤ect that gravitational �elds are in fact

quantized. Con�rmation of the Heisenberg-Coulomb e¤ect would also point to the need for a uni�ed

gravito-electrodynamical theory for weak, but quantized, gravitational and electromagnetic �elds

interacting with nonrelativistic quantum mechanical matter. As with the Rydberg atom analysis

explored in Section 5, such a theory would again fall far short of the ultimate goal of unifying all

known forces of nature into a �theory of everything,� but it would nonetheless be a very useful

theory to have.
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6.12 Appendix 6A: The Magnetic and Kinetic Inductances of a Thin

Metallic Film

The EM inductance L of the superconducting �lm is composed of two parts: the magnetic inductance

Lm , which arises from the magnetic �elds established by the charge supercurrents, carried by the

Cooper pairs, and the kinetic inductance Lk , which arises from the Cooper pairs�inertial mass [26].

Using (202) and the values of �0 = 83 nm and �p = �L = 37 nm for Pb at microwave frequencies,

one �nds for our superconducting �lm that lk is on the order of 10�5 m and that Lk is on the order

of 10�11 henries.

Lm can be found using the magnetic potential energy relations

U =

Z
B2

2�0
d3x =

1

2
LmI

2 ; (326)

where U is the magnetic potential energy, B is the magnetic induction �eld, and I is the (uniform)

current �owing through the �lm. Thus,

Lm =

Z
B2

I2�0
d3x : (327)

A closed-form, symbolic expression for this integral is complicated for the geometry of a �lm, but

numerical integration shows that in the case of a Pb �lm with dimensions 1 cm � 1 cm � 2 nm, Lm

is on the order of at most 10�15 henries, which is much smaller than Lk . The experiments of Glover

and Tinkham [24] corroborate the validity of this approximation. Thus, we can safely neglect the

magnetic inductance Lm in our consideration of L.

A comparison of this result for Lm with the result for Lm,G in the gravitational sector reveals

that

Lm,G
Lm

=
�G
�0

. (328)
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Recall now that the expression for l
0

k,G given by (265) is

l
0

k,G = d

�
�p
d

�2
, (329)

which is just the expression for lk,p (� lk) derived in Appendix 6B below. Thus we see that

Lk,G
Lk

=
�G l

0

k,G

�0lk
� �G
�0

. (330)

From (328) and (330), it follows that

Lm,G
Lk,G

� Lm
Lk

. (331)

Thus, we can also safely neglect the gravito-magnetic inductance Lm,G in our consideration of LG :
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6.13 Appendix 6B: The Kinetic Inductance Length Scale in a Collision-

less Plasma Model

In this appendix we ignore the quantum mechanical properties of superconducting �lms and consider

the simpler, classical problem of the kinetic inductance (per square) of a thin metallic �lm. We begin

with a physically intuitive derivation of the kinetic inductance length scale lk due to D. Scalapino

(whom we thank for pointing out this derivation to us). The current density for a thin metallic �lm

is given by

j = neev =
I

A
=

I

wd
, (332)

where e is the electron charge, v is the average velocity of the electrons, ne is the number density,

A is the cross-sectional area of the �lm through which the current �ows, w is �lm�s width, and d is

its thickness. The velocity of the electrons within the �lm can then be expressed as

v =
I

w

1

need
=

Iw
need

, (333)

where Iw is the current per width. Now, by conservation of energy it must be the case that

LkI
2
w

2
=
mev

2

2
ned . (334)

The left-hand side of (334) gives the energy per square meter carried by the �lm�s electrons in terms

of the �lm�s kinetic inductance per square and the square of the current per width, whereas the

right-hand side gives the same quantity in terms of the kinetic energy per electron multiplied by the

number of electrons per square meter of the �lm. Substituting (333) into (334) and recalling the

expression for the plasma skin depth given in (199), one �nds that

Lk =
me

nee2d
= �0

�2p
d
, (335)
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which implies that the kinetic inductance length scale of the �lm is given by

lk =
Lk
�0
= d

�
�p
d

�2
. (336)

Now let us derive the kinetic inductance length scale of a thin superconducting �lm by treating the

�lm as though it were a neutral, collisionless plasma consisting of Cooper-paired electrons moving

dissipationlessly through a background of a positive ionic lattice. We assume that the �lm is at

absolute zero temperature and that the mass of each nucleus in the lattice is so heavy that, to

a good �rst approximation, the motion of the lattice in response to an incident EM wave can be

neglected when compared to the motion of the electrons. If one then analyzes the �lm�s response to

the incident EM wave using the concepts of polarization and susceptibility, it is possible to show for

all non-zero frequencies that

�1 = 0 and �2 = "0
!2p
!
. (337)

Recalling the basic relationship between the kinetic inductance Lk and �2 given in (188), as well as

the fact that �0 = 1="0c
2, and that �p = c=!p when ! � !p , we see that according to this model

the kinetic inductance of the superconducting �lm (in the limit of ! � !p) Lk,p is given by

Lk,p =
1

"0!2pd
= �0

�2p
d
, (338)

which implies that the plasma version of the kinetic inductance length scale lk,p for a superconducting

�lm at absolute zero is

lk,p =
Lk,p
�0

= d

�
�p
d

�2
(339)

in agreement with (336). The discrepancy between these expressions and the one obtained in (202)

in Section 6.5 on the basis of the more sophisticated BCS model,

lk = �0

�
�p
d

�2
, (340)
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arises from the fact that the classical approaches taken here know nothing of the additional length

scale of the BCS theory, namely, the coherence length �0: This quantum mechanical length scale is

related to the BCS energy gap � through (195) and cannot enter into derivations based solely on

classical concepts; hence the appearance of the prefactor d instead of �0 in (336) and (339).
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6.14 Appendix 6C: Impedance and Scattering Cross-Section

The relevance of the concept of impedance to the question of scattering cross-section can be clari�ed

by considering the case of an EM plane wave scattered by a Lorentz oscillator, which plays a role

analogous to the resonant bar in Weinberg�s considerations of GR-wave scattering [39]. The Poynting

vector S of the incident EM wave is related to the impedance of free space Z0 as follows:

S = E�H =
1

Z0
E2k̂ , (341)

where the wave�s electric �eld E and magnetic �eld H are related to one another by jEj=Z0 jHj,

where Z0 =
p
�0="0 = 377 ohms is the characteristic impedance of free space, and where k̂ is the

unit vector denoting the direction of the wave�s propagation.

Multiplying the scattering cross-section � (not to be confused with the conductivity) by the time-

averaged magnitude of the Poynting vector hSi, which is the average energy �ux of the incident wave,

we get the time-averaged power hP i scattered by the oscillator, viz.,

� hSi = hP i = �


E2
�
=Z0 ; (342)

where the angular brackets denote a time average over one cycle of the oscillator. It follows that

� =
Z0 hP i
hE2i . (343)

When driven on resonance, a Lorentz oscillator dissipates an amount of power given by

hP i =
�
eE

dx

dt

�
=



E2
�


me=e2
; (344)

where x denotes the oscillator�s displacement, e is the charge of the electron, me is its mass, and 


is the oscillator�s dissipation rate. The oscillator�s EM scattering cross-section is thus related to Z0
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as follows:

� =
Z0


me=e2
: (345)

Maximal scattering will occur when the dissipation rate of the oscillator 
 and thus 
me=e
2

are minimized. In general, one can minimize the dissipation rate of an oscillator by minimizing

its ohmic or dissipative resistance, which is a form of impedance. Hence Weinberg suggested using

dissipationless super�uids instead of aluminum for the resonant bar, and we suggest here using

zero-resistance superconductors instead of super�uids. In particular, Weinberg�s analysis showed

that if the damping of the oscillator is su¢ ciently dissipationless, such that radiation damping by

GR radiation becomes dominant, the cross-section of the oscillator on resonance is on the order of

a square wavelength, and is independent of Newton�s constant G. However, the bandwidth of the

resonance is extremely narrow, and is directly proportional to G.

In this regard, an important di¤erence between neutral super�uids and superconductors is the

fact that the electrical charge of the Cooper pairs enters into the interaction of the superconductor

with the incoming GR wave. This leads to an enormous enhancement of the oscillator strength of

Weinberg�s scattering cross-section extended to the case of a superconductor in its response to the

GR wave, relative to that of a neutral super�uid or of normal matter like that of a Weber bar.

As we have seen earlier, the non-localizability of the negatively charged Cooper pairs, which

follows from the Uncertainty Principle and is protected by the BCS energy gap, causes them to un-

dergo non-geodesic motion in contrast to the decoherence-induced geodesic motion of the positively

charged ions in the lattice, which follows from the Equivalence Principle. The resulting charge sep-

aration leads to a virtual plasma excitation inside the superconductor. The enormous enhancement

of the conductivity that follows from this, i.e., the H-C e¤ect, can also be seen from the in�nite-

frequency sum rule that follows from the Kramers-Kronig relations, which are based on causality

and the linearity of the response of the superconductor to either an EM or a GR wave [25, p. 88,

�rst equation].

In the electromagnetic sector, the Kramers-Kronig relations for the real part of the charge conduc-
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tivity �1(!) and the imaginary part �2(!) (not to be confused with the above scattering cross-section

�) are given by [62, p. 279]

�1(!) =
2

�

1Z
0

!0�2 (!
0) d!0

!02 � !2 (346a)

�2(!) = �
2!

�

1Z
0

�1 (!
0) d!0

!02 � !2 . (346b)

From (346b) and the fact that electrons become free particles at in�nitely high frequencies, one can

derive the in�nite-frequency sum rule given by Kubo [62, 63]

1Z
0

�1(!)d! =
�

2
"0!

2
p , where !

2
p =

nee
2

"0me
. (347)

In the GR sector, making the replacement in (347),

e2

4�"0
! Gm2 , (348)

where m is regarded as the mass of the neutral atom that transports the mass current within the

super�uid, is relevant to the interaction between a neutral super�uid and an incident GR wave. This

leads to the following in�nite-frequency sum rule:

1Z
0

�1;G (!)d! = 2�
2n"0Gm . (349)

Numerically, this result is extremely small relative to the result given in (347), which implies a much

narrower scattering cross-section bandwidth in the GR sector.

In the case of a superconductor, the replacement given by (348) is unphysical, due to the charged

nature of its mass carriers, i.e., Cooper pairs. Here, Kramers-Kronig relations similar to those given

in (346) lead to a result identical to the one given in (347). Thus, using superconductors in GR-wave

detectors will lead to bandwidths of scattering cross-sections that are orders of magnitude broader
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than those of neutral super�uids.

One important implication of this argument concerns the GR scattering cross-section of a super-

conducting sphere. If the sphere�s circumference is on the order of a wavelength of an incident GR

wave, the wave will undergo the �rst resonance of Mie scattering. In the case of specular re�ection

from the surface of a superconducting sphere, this corresponds to a broadband, geometric-sized scat-

tering cross-section, i.e., a scattering cross-section on the order of a square wavelength over a wide

bandwidth. This implies that two charged, levitated superconducting spheres in static mechanical

equilibrium, such that their electrostatic repulsion balances their gravitational attraction, should

become an e¢ cient transducer for converting EM waves into GR waves and vice versa [60]. As

suggested in Section 6.11, two such transducers could be used to perform a Hertz-like experiment

for GR microwaves.
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7 Gravitationally-Induced Charge Separation in Finite Su-

perconductors

Charge separation was discussed in detail in Section 6.6 in the context of re�ection of high-frequency

gravitational waves from thin superconducting �lms. Another potential aspect of this e¤ect, which

is perhaps more experimentally feasible, is that of direct measurement of the charge separation in a

bulk superconductor in the presence of a weak, low-frequency tidal gravitational �eld. The ability

to measure this e¤ect may constitute a novel coupling between gravitation and electromagnetism.

7.1 Charge Separation During Free Fall in the Earth�s Tidal Gravitational

Field

Since the positively charged lattice ions and the negatively charged Cooper pairs undergo relative

motion, a tidal gravitational �eld will electrically polarize a superconductor through charge separa-

tion. This leads to internal electric �elds. Consider two superconducting cubes connected by a wire.

The wire is slack so that the two cubes are completely mechanically decoupled. If the wire is not

superconducting, the cubes will converge as they fall toward the center of the Earth in the Earth�s

inhomogeneous gravitational �eld, in accordance with the Weak Equivalence Principle. If the wire

is superconducting, however, then the system comprised of the two cubes and the wire becomes a

single, coherent superconducting system. While this coherent superconducting system is falling in

the Earth�s inhomogeneous gravitational �eld, the Cooper-pair electrons are not allowed to converge

along with the lattice ions, as shown above. The relative motion between the electrons and the ions

creates a charge separation and induces a measurable voltage potential across opposite faces of each

cube. It will be shown that this e¤ect can be observed in a laboratory setting.

The charge separation that ensues from the relative motion between the electrons and the ions

will cause a voltage potential to appear across opposite ends of each superconducting cube. For

simplicity, let each cube have sides with lengths L, and let L also be the initial distance between
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each cube. Modeling the charge extrusions on each side of a single superconducting cube as thin,

in�nite sheets of charge, the magnitude of the electric �eld inside the cube will be given by

E =
Q

�0L2
; (350)

where �Q is the charge on the edges of the cubes, and �0 is the permittivity of free space. The

amount of charge required to balance the tidal forces on the cubes can be found by equating the

tidal force and the electrostatic force, and thus

FE =
Q2

�0L2
= mg0 =

�
�L3

�� gL

2RE

�
= Fg; (351)

where � is the mass density of the cube (lead is used in this case, where �Pb = 11340
kg
m3 ), RE is the

radius of the Earth, and the horizontal component of the tidal gravitational acceleration g0 was �rst

discussed in Section 5.3. Thus, the charge is given by

Q =

r
�g�0
2RE

L3: (352)

This formula uses the realistic approximation that the Earth�s radius is much larger than both L

and the height from which the system is dropped. The voltage potential across the faces of a single

cube is

V = EL =
Q

�0L
=

r
�g

2�0RE
L2: (353)

Table 2 below shows the magnitude of the charge and of the voltage potential as a function of length

L for this charge distribution model.

L = 1 cm L = 5 cm

Charge (C) 2:8� 10�13 3:5� 10�11
Voltage (V) 3:1 78

Table 2: Charge and voltage potential as a function of length for charged sheet model
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If the charge distribution is modeled using point charges instead of in�nite sheets, the system can

be represented by two sub-systems, where each sub-system consists of two point charges of opposite

charge, connected by a rigid, electrically-neutral rod, as in Figure 9.

Figure 9: Point charge distribution model in the charge separation experiment

The net force between the two sub-systems can be calculated by summing the forces on each

charge, recognizing that the distance between the two sub-systems can change, but that the two

point charges within each sub-system cannot move with respect to each other. Since the forces on

each sub-system will be symmetric, it is su¢ cient to calculate the force of the left sub-system in the

�gure on the right sub-system. The notation F�+; F��; F++; and F+� will be used to symbolize the

force of the left point charges on the right point charges, where the �rst subscript denotes the charge

within the left sub-system, and the second subscript denotes the charge in the right sub-system.

These forces, which all act along one dimension, are given by

F�+ = �1
4

Q2

4��0L2
(354a)

F�� =
1

9

Q2

4��0L2
(354b)

F++ =
Q2

4��0L2
(354c)

F+� = �1
4

Q2

4��0L2
: (354d)

The sum of these forces is the total force of the left sub-system on the right sub-system, given by

FQ =
11

18

Q2

4��0L2
: (355)
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Setting this force equal to the tidal gravitational force de�ned in (351) and solving for Q yields

Q =

r
36��0�g

11RE
L3; (356)

and thus the voltage potential is

V = EL =
L

Q
FQ =

r
11

144

�g

��0RE
L2: (357)

Table 3 below shows the magnitude of the charge and of the voltage potential as a function of length

L for this charge distribution model.

L = 1 cm L = 5 cm

Charge (C) 1:3� 10�12 1:6� 10�10
Voltage (V) 0:69 17

Table 3: Charge and voltage potential as a function of length for point-charge model

The values shown in these two tables suggest that the voltage should be experimentally de-

tectable. However, these calculations do not take into account the amount of time, or, equivalently,

the amount of free fall distance is required for this equilibrium. For experimental feasibility, the

amount of free fall time/distance must be su¢ ciently short. Consider the situation depicted in

Figure 10 showing a point mass falling a distance �h near the Earth�s surface, and converging a dis-

tance �x as it falls. The opposite point mass that would make this �gure identical to the situation

depicted in Figure 1 is not shown.

Using similar triangles, the relationship between the free fall distance and the convergence dis-

tance is given by

�x =
L

2RE
�h: (358)

Consider now the model that the superconducting electron wavefunction exhibits quantum in-

compressibility, and therefore the super�uid does not follow the local geodesic, but instead falls
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Figure 10: A point mass, shown as a square, falls near the surface of the Earth along a local geodesic
(diagonal line) that points towards the center of the Earth, shown as a circle.

straight down, i.e. such that it preserves the distance between the objects during free fall. An

expression for the charge accumulated on the outside faces of the samples is given in (356), but the

charge can also be expressed in terms of the extrusion distance by

Q = nseL
2�x; (359)

where ns is the superconducting electron density, since the ions will follow the local geodesic. Equat-

ing this expression with (356) and solving for �x yields

�xeq =

s
36��0�g

11n2se
2RE

L: (360)

Solving (357) for L and substituting into the above expression yields

�xeq =

"�
18

11

�3
(4��0)

3
�gV 2

2n4se
4RE

#1=4
: (361)
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Substituting this into (358) and solving for �h, again using (357) for L, yields

�heq =

s
18

11

(4��0) 2�gRE
n2se

2
; (362)

which is the required free fall distance for the electrostatic and gravitational forces to reach equi-

librium. Using �heq = 1
2gt

2
eq shows that the free fall time for these forces to reach equilibrium is

given by

teq =

�
18

11

(4��0) 8�RE
n2se

2g

�1=4
: (363)

Note that the equilibrium distance and time are independent of the sample dimensions and separa-

tion. The superconducting electron density (near absolute zero) is related to the London penetration

depth of the superconducting material by [25]

ns =
me

�0�
2
Le

2
; (364)

which, for lead, has a value of ns;Pb = 2:1� 1028 electrons per cubic meter, using the known value

of the London penetration depth of lead �L;Pb = 37 nm [64]. Thus, for equilibrium to be achieved,

a free fall distance of �heq � 5 nm, corresponding to a free fall time of teq � 30 �s. Though this

model assumes that the ions will accelerate at a constant rate until equilibrium is achieved, whereas

in reality, the horizontal acceleration will decrease to zero as the sub-system approaches equilibrium,

and therefore the required free fall distance and time are somewhat underestimated, these results

suggest that the experiment may be able to be performed in a laboratory setting.
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7.2 Experimental Detection of Charge Separation in the Earth�s Tidal

Gravitational Field

An experiment was performed in the Chiao lab in which two superconducting lead spheres were

connected by a thin superconducting lead wire. Copper wires, which are not superconducting,

were attached to the outer and inner faces of the spheres and connected to independent channels

of a Techtronix model TDS2024B to measure the voltage potential across the faces. The samples

were resting on a spring-loaded platform, which released the system into free fall and automatically

triggered the oscilloscope.

The experiment was performed roughly 100 times. Though a change in the voltage potential

was registered frequently, it was later determined that this was due to microphonic interference by

the violent jarring of the apparatus imparted by the springs when the mechanism was triggered.

This was veri�ed when changes in the voltage potential were observed at temperatures above the

critical temperature of lead. Since the charge separation e¤ect is not predicted to occur in normal

matter, it was this control experiment which suggested that the original measurements were false.

Furthermore, it was also determined that direct measurement of the charge separation through

leads made of normal conducting material was not feasible, since the superconducting electrons

cannot travel through the normal wire. However, if charge separation does exist, external electrical

�elds would be created near the inner and outer faces of the falling superconductors. If the electric

�elds were su¢ ciently large, one might be able to use these �elds to induce a charge on a normal

conducting plate, placed just outside the superconducting sample, such that the two are electrically

isolated. The following section explores this possibility further, using time-varying tidal gravitational

forces, instead of free fall in the Earth�s gravitational �eld.
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7.3 Charge Separation Induced by External Source Masses

Consider two large, diametrically-opposite source masses rotating around two stationary pendula.

Consider each pendulum to have two support wires, so that the motion is constrained along one

dimension. See Figure 11.

Figure 11: Pendula are supported by two wires each. This con�guration causes motion along a
single axis, denoted by x in the �gure.

The source masses rotate around the dilution refrigerator (Oxford Instruments model DR200)

containing the pendula at approximately 1 rpm, and so the angular frequency is approximately

! = �
30 s

�1: The gravitational forces on the pendula due to the source masses will thus be periodic

in time with a period of approximately 60 seconds (a 30-second period is theoretically possible due

to symmetry, but for systematic errors in the setup and design, the period will be assumed to be 60

seconds). The magnitude of the gravitational forces will vary according to Newton�s inverse-square

law. In each instant in time, the forces on the pendula can be calculated. Assuming that the

angular frequency of the rotating source masses is su¢ ciently small, a quasi-static model can be

implemented, in which the system is in static equilibrium at any given time.

Figure 12 shows the system at an arbitrary instant in time where � = !t. The forces F1 and F2

are gravitational forces exerted by the source masses. F3 is the gravitational force exerted by the

opposite pendulum. The separation distance between the two pendula is s. Let the vertical faces

of the source masses that are (roughly) oriented radially have length a, the vertical faces facing the

dilution refrigerators have length b, and the heights have dimension c:
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Figure 12: The experimental setup of the Cavendish-like experiment. The �gure shows a snapshot
of the dynamic system, where the small displacements of the pendula have, for the moment, been
neglected. The coordinates x; y; and z will vary with the angle �, but the unit vectors i; j; and k
will remain constant as depicted in the �gure. Recall that the pendula are constrained to move
along the axis parallel to the unit vector i:

A di¤erential mass element dM of the upper source mass in Figure 12 exerts a di¤erential force

on the right pendulum with magnitude (direction will be considered separately) given by

jdF1j =
Gm

x2 + y2 + z2
dM =

Gm�

x2 + y2 + z2
dV; (365)

where � is the density of the material (assumed to be uniform). Integrating this expression, we

obtain the total force exerted by the upper source mass, given by

jF1j = Gm�

Z c=2

�c=2

Z s=2 sin!t+b=2

s=2 sin!t�b=2

Z R�s=2 cos!t+a

R�s=2 cos!t

dxdydz

x2 + y2 + z2
: (366)

Similarly, the total force exerted on the right pendulum by the lower source mass in Figure 12 is
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given by

jF2j = Gm�

Z c=2

�c=2

Z s=2 sin!t+b=2

s=2 sin!t�b=2

Z R+s=2 cos!t+a

R+s=2 cos!t

dxdydz

x2 + y2 + z2
: (367)

It is stated here without proof that the angle � subtended by vector F1 and the line joining the

two pendula in Figure 12 satis�es the equations

cos� =

s
(R+ a=2)2 cos2 !t+ s2=4� s(R+ a=2) cos!t

(R+ a=2)2 + s2=4� s(R+ a=2) cos!t (368a)

sin� =
(R+ a=2) sin!tp

(R+ a=2)2 + s2=4� s(R+ a=2) cos!t
(368b)

and that the angle 
 subtended by F2 and the line joining the two pendula in Figure 12 satis�es the

equations

cos 
 =
s

2R+a + cos!tr�
s

2R+a + cos!t
�2
+ sin2 !t

(369a)

sin 
 =
sin!tr�

s
2R+a + cos!t

�
+ sin2 !t

; (369b)

and thus the full expressions for the forces acting on the right pendulum in Figure 12 are given by

F1 = Gm�

Z c=2

�c=2

Z s=2 sin!t+b=2

s=2 sin!t�b=2

Z R�s=2 cos!t+a

R�s=2 cos!t

dxdydz

x2 + y2 + z2
(cos� i+ sin� j) (370)

F2 = Gm�

Z c=2

�c=2

Z s=2 sin!t+b=2

s=2 sin!t�b=2

Z R+s=2 cos!t+a

R+s=2 cos!t

dxdydz

x2 + y2 + z2
(� cos 
 i� sin 
 j) ; (371)

assuming that the pendula and the centers of mass of the source masses are coplanar. Recalling that

the pendula are constrained to move along the axis parallel to the unit vector i, the unconstrained

components of the forces exerted by the source masses on the right pendulum are given by

F1 = Gm� cos�

Z c=2

�c=2

Z s=2 sin!t+b=2

s=2 sin!t�b=2

Z R�s=2 cos!t+a

R�s=2 cos!t

dxdydz

x2 + y2 + z2
(372)

F2 = Gm� cos 


Z c=2

�c=2

Z s=2 sin!t+b=2

s=2 sin!t�b=2

Z R+s=2 cos!t+a

R+s=2 cos!t

dxdydz

x2 + y2 + z2
: (373)
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The force exerted by the left pendulum on the right pendulum is anti-parallel to i, and its

magnitude is given by

F3 =
Gm2

s2
: (374)

Viewing the right pendulum from the side, the free body diagram can be pictured as in Figure

13.Comparing the vertical and horizontal components of the vectors in Figure 13, we obtain an

Figure 13: Free-body diagram of one pendulum acted upon by the tidal forces of the rotating source
masses.

expression for the de�ection magnitude dn, given by

dn �
`

mg
(F1 � F2 � F3) ; (375)

where we have assumed dn to be small, so that (375) is explicit. The subscript n is used for the case

that the pendula are normal, so that both the ionic lattice and the valence electron system follow

the same local geodesics. It is likely that F3 can be neglected if the source masses are su¢ ciently

large.

Let us now turn to the concept of charge separation within superconductors. Let the pendula now

be superconducting, and share a continuous superconducting connection, so that the Cooper-pair

wavefunction has a constant phase across both pendula. If we assume that only the ionic lattice of the

pendula are subject to the gravitational forces of the source masses, a charge separation will ensue.
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For the moment, let us assume that the Cooper pair wavefunction is completely rigid, and that

the super�uid will therefore remain motionless with respect to the center of mass of the pendulum

system, which lies approximately at the midpoint between the two pendula. This charge separation

will cause Coulomb forces both between the two pendula, and within the pendula themselves. These

forces must be taken into account to accurately predict the motions of the ionic lattices, and the

magnitude of the charge separation.

Figure 14: Superconducting pendula under the in�uence of tidal forces that produce charge separa-
tion. The physical dimension of the pendulum along the axis of the charge separation is given by
L, and the center-to-center distance between the pendula is given by s.

Figure 14 shows the pendula at an instant in time when the ionic lattices are pulled outwards

by the source masses. The charged faces of the pendula are modeled here using point charges.

Summing the Coulombic forces that the left pendulum exerts on the ionic lattice of the right

pendulum in Figure 14, it can be shown that the total Coulombic force is

FQ;d>0 �
�Q2
4��0s2

�
L(2s+ L)

(s+ L)2

�
i; (376)

where the charge extrusion distance d has been ignored, since d is much smaller than s and L. The

Coulomb force on the ionic lattice of the right pendulum exerted by the electron super�uid within

the right pendulum, due to charge separation, is

Fc;d>0 � �
Q2

4��0L2
i; (377)

where the same approximation has been used. The subscript d > 0 has been used since (376) and

(377) are only valid when the positively-charged ionic lattice is extruded from the negatively-charged
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super�uid on the outer faces of the pendula. When the signs of the charges are reversed, the forces

on the ionic lattice of the right pendulum can be found by making the substitution L! �L, so the

general expression for the Coulombic forces on the right pendulum are

FQ �
�Q2
4��0s2

(
Lsgn(d) [2s+ Lsgn(d)]

[s+ Lsgn(d)]2

)
i (378)

and

Fc � �
Q2sgn(d)
4��0L2

i; (379)

where

sgn(d) =

8>>>>>><>>>>>>:
1; d > 0

0; d = 0

�1; d < 0

(380)

Considering all forces on a single superconducting pendulum, we have a model that is similar to

that depicted in Figure 13, but FQ and Fc are considered, in addition to
3X
i=1

Fi: For this case,

d � `

mg
(F1 � F2 � F3 � FQ � Fc) ; (381)

where FQ and Fc are the magnitudes of the vectors de�ned in (378) and (379), respectively.

The extruded charge Q depends on the extrusion length. Starting with

Q = 2ensV; (382)

where ns is the superconducting electron density, �2e is the Cooper pair charge, and V is the

extrusion volume. The current experimental design involves cylindrically-shaped pendula, so (382)

becomes

Q = 2ens�r
2d; (383)
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where r is the cylindrical radius of the sample. Thus,

d =
Q

2ens�r2
; (384)

and it is noted that

sgn(d) = sgn(Q): (385)

Substitution of (384) and (385) into (381), we have

Q =
2ens�r

2`

mg

 
F1 � F2 � F3 �

Q2sgn(Q)
4��0s2

(
L [2s+ Lsgn(Q)]

[s+ Lsgn(Q)]2

)
� Q2sgn(Q)

4��0L2

!
: (386)

The feasibility of detecting this charge in the laboratory will be discussed in Section 7.5.
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7.4 Beyond First Order: Exploring the Zero-Momentum Approximation

In the previous sections, the approximation was made that the electron super�uid of the supercon-

ducting sample had in�nite quantum rigidity. This approximation is only valid if the wavefunction is

su¢ ciently incompressible when acted upon by weak tidal gravitational �elds, as well as su¢ ciently

incompressible when compared to the ionic lattice of the system to cause a charge separation. To

show that this is the case, consider the complex order parameter ' in the Ginzburg-Landau theory

of superconductivity. The complex order parameter for a semi-in�nite superconductor (where the

superconductor resides in the half-plane x > 0) is the solution to the time-independent, non-linear

Schrödinger equation

� ~2

4me
r2'+ �'+ �

2
j'j2 ' = 0; (387)

where � and � are phenomenological parameters given by

� = � ~2

4me�
2
0

(388)

� =
�0~4

16m2
e�
4
0B

2
c

; (389)

where �0 is the coherence length, and Bc is the critical magnetic �eld of the superconducting material.

The solution to (387) is given by [65]

' = '0 tanh (Cx) ; (390)

where C � 1p
2�0
, and

'0 =

s
2 j�j
�

=
2�0Bc
~

s
2me

�0
; (391)

is the value of ' at positive in�nity. For a �nite superconductor, the complex order parameter is

well approximated by

' (x) = '0 ftanh (Cx) + tanh [C (L� x)]� 1g ; (392)
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where L is the length of the sample in the x dimension. The form of (392) was determined by noting

the qualitative similarity of the hyperbolic tangent function and the Heaviside function. Figure 15

shows the analytical solutions for two semi-in�nite superconductors (where C = 1 arbitrary unit of

inverse length and L = 10 units of length), and the approximate solution for a �nite superconductor,

given by (392). The approximation is valid as long as the length L of the �nite superconductor is

much greater than the coherence length �0.
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Figure 15: Plot of complex order parameters for semi-in�nite superconductors, and an approximation
for a �nite superconductor.

The free energy density of a superconductor is given by [25]

f = fn0 + � j'j2 +
�

2
j'j4 + 1

4me

������i~ ddx � 2eA� 2meh

�
'

����2 + B2

2�0
; (393)

where DeWitt�s minimal coupling rule [15] has been included to account for tidal gravitational �elds.

The factors of 2 that appear in the minimal coupling rule in this expression are due to the fact that

the mass and charge of a Cooper pair are twice that of a single electron. Near T = 0, and in the
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absence of any persistent currents or external electromagnetic �elds, this becomes

f = � j'j2 + �

2
j'j4 + 1

4me

������i~ ddx � 2meh

�
'

����2 (394)

= � j'j2 + �

2
j'j4 + 1
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������i~ ddx � 2me
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RE
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2
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RE

�2
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�+me

�
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RE
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x2
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and so the free energy density is

f =

"
�+me

�
gt
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�2
x2

#
'20 ftanh (Cx) + tanh [C (L� x)]� 1g

2 (396)

+
�

2
'40 ftanh (Cx) + tanh [C (L� x)]� 1g

4
+

~2

4me
C2'20

�
sech2 (Cx)� sech2 [C (L� x)]

	2
:

The force is equal to the derivative with respect to L of the free energy, which is equal to the integral

with respect to x of the free energy density, so by the fundamental theorem of calculus,

F =
dE

dL
=

d

dL

Z L

0

f(x)dx = f(L); (397)

which is equal to
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:

(398)

This force is on the order of Newtons for aluminum, and kilo-Newtons for lead. Since the tidal

gravitational �eld of the Earth will not produce these forces under ordinary circumstances (i.e.
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realistic masses and separation distances), the zero-momentum approximation is valid while the

entire electron super�uid remains in the BCS ground state.
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7.5 Experimental Detection of Charge Separation Induced by External

Source Masses

Two stacks of lead bricks were diametrically placed on a heavy-duty rotating platform (Synergy

model 788088). Each stack has a mass of approximately 430 kg. Figure 16 shows a drawing of the

experimental con�guration. Since there are several ways to orient the bricks, the orientation used

Figure 16: A drawing of the experimental setup used in the charge separation experiment. The
grey blocks are lead masses of approximately 430 kg each, which are placed on a rotating turntable.
The dashed line is a stationary dilution refrigerator, containing the superconducting pendula. The
pendula are the only superconducting material used in the experiment.

was that which gave the largest outward de�ection of the pendula when the line joining the centers

of the source masses is co-linear with the line joining the axis of the pendula, found by evaluating the

integral in (372) for all possible combinations of a; b; and c. It was found that a=6 in, b=24 in, and

c=16 in led to this maximum de�ection. These values (in meters) were used in calculation of the

forces that appear in the expression for the charge in (386). Solving this expression explicitly for Q

is non-trivial, so a numerical method was used, with �xed values determined by actual experimental

constraints. The expressions for F1 and F2 were evaluated separately, using an adaptive Simpson

quadrature numerical integration method. Figure 17 shows the expected charge as a function of

time using realistic values for the experiment to be performed in a laboratory setting.
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Figure 17: Charge vs. time in the charge separation experiment.
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7.6 Experimental Results and Conclusions

The data collected from the electrometer failed to reproduce the predicted curve depicted in Figure

17. The electrometer showed a DC o¤set of approximately 3 pC at its most sensitive detection

range. The speci�cations for the electrometer state that variations in charge in the femto-Coulomb

range should be detectable. However, the charge signal remained �at during the rotation of the

masses, with a noise �oor of roughly 400 fC. Data was continuously collected and averaged while

the masses were stationary, continuously collected and averaged again after rotating the masses by

90 degrees, where the largest di¤erence was expected, and the two sets were compared to see if any

di¤erence was present. No substantial di¤erence was observed.

However, with full credit to be given to Luis Martinez, this negative result may be able to be

explained using the London equation

E = �0�
2
L
@j

@t
= 2�0�

2
Lnse

@v

@t
; (399)

where current density j =2nsev. This equation shows that a DC electric �eld within a supercon-

ductor will accelerate Cooper-pair electrons to in�nite velocities, which is unphysical. Thus, only

the electric �eld that arises due to the Schi¤-Barnhill e¤ect can be present within a superconductor.

If the charge separation predicted in the preceding experiment were to occur, charge layers would

be formed that have a voltage potential between them of approximately 1 volt. Thus, kinetic energy

would be imparted to the Cooper-pair electrons with a magnitude on the order of an electron volt.

The BCS energy gap for temperatures T � Tc is well-approximated by

Egap � 3:5kBTc ; (400)

where kB is Boltzmann�s constant, and Tc is the critical temperature of the material. Using the

known value of the critical temperature of aluminum (Tc,Al = 1:1 K [64]), the gap energy is less than

1 meV, suggesting that pair-breaking within the electron super�uid is a more energetically favorable
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outcome than low-frequency charge separation. It is noted that the experiments were performed at

temperatures of approximately 30 mK, so the approximation in (400) is valid.

Thus, it is expected that when low-frequency relative motion exists between the ions and the

electron super�uid, pair-breaking occurs so that normal electrons accumulate to oppose the electric

�eld induced by the gravitational �eld. At �rst glance, it appears that no charge separation can exist

within the superconductor, and that the arguments presented in favor of the re�ection of gravitational

radiation from a thin superconducting �lm are invalid. However, (399) only precludes low-frequency

electric �elds from existing within a superconductor. For su¢ ciently large superconducting �lms,

and su¢ ciently high gravitational radiation frequencies, re�ection can occur. As discussed in

Section 6.8, there should always be a regime where the superconductor will respond linearly to the

gravitational radiation �eld, thus making e¢ cient mirrors for gravitational radiation a possibility.

These results suggest that charge separation within superconductors will not occur in the presence

of low-frequency/high-amplitude gravitational radiation, but the possibility of charge separation in

the presence of high-frequency/low-amplitude gravitational radiation remains.
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8 Gravitational Wave Transducer Experiment

Section 6.11 discussed transduction between gravitational wave power and electromagnetic wave

power. Experiments have been performed in the Chiao lab on using e¢ cient conversion between

the two types of waves to communicate using gravitational carrier waves. The transmitter apparatus

consisted of a two-body superconducting system that would convert microwave-frequency EM input

to a GR output at the same frequency. The emitted GR waves should scatter from a second two-

body superconducting system in a receiver apparatus to create EM radiation that could be detected

with a quadrupole antenna.

8.1 Brief Outline of Proposed Experiment

There is no physical principle which forbids the conversion of electromagnetic wave energy into

gravitational wave energy, or vice versa. Here a method is proposed to perform this conversion

e¢ ciently using macroscopically coherent, charged quantum matter. Speci�cally, it is proposed that

the use of pairs of charged superconducting spheres at cryogenic temperatures as e¢ cient �quantum

transducers� for this wave-to-wave conversion process. The charge on the spheres enables them

to couple to electromagnetic radiation, and their mass enables them to couple to gravitational

radiation. The superconductors possess a macroscopic quantum coherence that makes the wave-to-

wave conversion process e¢ cient. The spheres and their separations are designed to be comparable

in size to the microwave wavelength of the radiations which are being converted from one form to

the other, so that the system becomes an e¢ cient quadrupole antenna for coupling to both kinds of

radiations. Important applications to communications would immediately follow from a successful

implementation of this kind of device, since the Earth is transparent to gravitational radiation.

Based upon the linearization of Einstein�s �eld equations, and the BCS theory of superconduc-

tivity, the Chiao group at UC Merced has recently shown it to be theoretically possible to build a

high-e¢ ciency communications transceiver that converts electromagnetic radiation to gravitational

radiation and vice-versa using the above two-charged-superconducting-sphere con�gurations. An
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impedance-matched transceiver has been shown in principle to be able to convert an input of 1 mW

of electromagnetic wave power to 0.5 mW of gravitational wave power.

The interaction of charged, macroscopically coherent quantum systems, such as a pair of charged

superconducting spheres, with both electromagnetic and gravitational waves, is to be studied exper-

imentally. When the charge-to-mass ratio of a pair of identical spheres is adjusted so as to satisfy

the �criticality condition�Q=M =
p
4��0G, where �0 is the permittivity of free space, and G is New-

ton�s gravitational constant, the attractive gravitational force will be balanced against the repulsive

electrostatic force between the two spheres. At criticality, when these two spheres undergo simple

harmonic motion relative to each other, they will generate equal amounts of GR and EM radiations

in an equipartition of energy. If the spheres are superconducting, they will also scatter an incoming

GR or EM wave into equal amounts of GR and EM radiations.

The superconducting spheres possess an energy gap (the BCS gap) separating the ground state

from all excited states. The quantum adiabatic theorem then implies that the quantum phase every-

where inside the superconductors, in their linear response to both kinds of weak incident electro-

magnetic and gravitational radiation �elds, whose frequencies are less than the BCS gap frequency,

such as at microwave frequencies, will remain single-valued at all positions and times. This linear re-

sponse of these coherent quantum systems leads to hard-wall boundary conditions at the surfaces of

the spheres, in which both the incident EM and GR radiation �elds will undergo specular re�ections

at the surfaces of these superconducting spheres. Therefore the scattering cross-sections for both

kinds of radiation �elds will be quite large, being on the order of � = 2�a2, where a is the radius of

the spheres, when the radii are comparable in size to the microwave wavelength. The distance sepa-

rating the two spheres will also be assumed to be comparable to the microwave wavelength. Under

these circumstances, the Mie scattering cross-sections of pairs of charged superconducting spheres

for both EM and GR radiations at microwave frequencies will be large enough to be detected.

At su¢ ciently low temperatures with respect to the BCS gap, all dissipative degrees of freedom

of the spheres will be frozen out by the Boltzmann factor. Then, at criticality, there will be an
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equipartition of energy into both kinds of scattered radiation, so that the scattering cross-section is

the same for the time-reverse process as for the time-forward process, by time-reversal symmetry.

This implies that a Hertz-like experiment, i.e., a transmitter-receiver (or �transceiver�) experiment,

in which GR waves are generated at the transmitter by EM microwaves incident on a pair of charged

superconducting spheres at criticality, and detected at the receiver by another pair of charged su-

perconducting (impedance-matched) spheres at criticality in a separate, EM shielded apparatus.

This would enable a communication device to make use of gravitational carrier waves, which, unlike

electromagnetic carrier waves, are not prone to mass-based attenuation.
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8.2 Levitation of Gravitational Wave Scatterers

One important aspect in the early stages of the transduction experiment was the levitation of the

quantum-coherent systems. Initially, charged super�uid helium drops were to be used, since they

exhibit the necessary quantum mechanical properties, such as a gap-protected ground state, required

for EM and GR wave transduction. Liquid helium drops can be levitated by inhomogeneous

magnetic �elds [66], such as those created by a pair of coaxial, current-carrying coils, with their

currents oppositely oriented. In the special case that the radius of the coils is equal to the separation

distance, the system is commonly called a set of anti-Helmholtz coils. The magnetic energy density

of the inhomogeneous �eld is given by

U =
B2�

2�0
; (401)

where � is the magnetic susceptibility. Since liquid helium is diamagnetic, � is negative, and

therefore a force given by

F = �rU = � �

2�0
r
�
B2
�

(402)

will act to accelerate the helium drop towards the point of lowest �eld magnitude. Thus, for

levitation,

j�j
�0

����B@B@z
���� � �g; (403)

where � is the mass density of liquid helium. Using these known values [67], the required value of��B @B
@z

�� is 20.7 T2 per cm. However, for the spatial constraints of the dilution refrigerator systems

in the Chiao lab, this required a current density of 70 kA per square cm within the magnetic coils,

which exceeded the maximum current density of 10 kA per square meter. Thus, a magnet which

would generate this force was not possible to integrate into the cryogenic system.

A superconductor shares many of the same quantum mechanical properties of super�uid helium,

and is a perfect diamagnet, where � = �1. Since the molar susceptibility of liquid helium is on the

order of 10-6 [68], much weaker levitation forces are required for superconductors, despite a larger

mass density. For superconducting lead, levitation can be achieved when
��B @B

@z

�� is smaller by a
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factor on the order of 104 as compared to liquid helium.

The situation is slightly more complicated, however, as a pair of oppositely-oriented coils has only

one stable equilibrium point, and two objects are required for e¢ cient transduction (see Section 6.9).

The following sections describe speci�c levitation methods that were considered for the experiment.
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8.2.1 Electrostatic Levitation Using a Charged Ring, and Extending Earnshaw�s The-

orem to Include Neutral, Polarizable Particles

Introduction In this tribute in honor of the memory of Prof. Dr. Herbert Walther, we consider

the possibility of extending his famous work on the trapping of an ordered lattice of ions [69]

in a Paul trap [70], to the trapping of neutral atoms, and more generally, to the levitation of

a macroscopic neutral polarizable object, in a purely electrostatic trap, for example, in the DC

electric �eld con�guration of a charged ring. Earnshaw�s theorem will be extended to the case of

such neutral objects, and we shall show below that the stable levitation and trapping of a neutral,

polarizable object, which is a high-�eld seeker, is generally impossible in an arbitrary electrostatic

�eld con�guration. We shall do this �rst for the special case of the electrostatic con�guration of a

simple charged ring, and then for the general case of any DC electric �eld con�guration.

Figure 18: A uniformly charged ring with radius a lies on the horizontal x-y plane, with its axis of
symmetry pointing along the vertical z axis. Can levitation and trapping of a neutral particle occur
stably near point L, where there is a convergence of E-�eld lines?

Consider the charged-ring geometry shown in Figure 18. The region near the so-called �levita-

tion� point L in this �gure is akin to the focal region of a lens in optics. Just as two converging

rays of light emerging from a lens in physical optics cannot truly cross at a focus, but rather will

undergo an �avoided crossing� near the focal point of this lens due to di¤raction, so likewise two
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converging lines of the electric �eld cannot cross, and therefore they will also undergo an �avoided

crossing�near L. There results a maximum in the z component of the electric �eld along the vertical

z axis at point L. The resulting �avoided crossing� region of electric �eld lines in the vicinity of

point L is therefore similar to the Gaussian beam-waist region of a focused laser beam. Ashkin and

his colleagues [71] showed that small dielectric particles, which are high-�eld seekers, are attracted

to, and can be stably trapped at, such Gaussian beam waists in �optical tweezers�. Similarly here

a neutral dielectric particle, which is a high-�eld seeker, will also be attracted to the region of the

convergence of E-�eld lines in the neighborhood of L, where there is a local maximum in the electric

�eld along the z axis. The question arises: Can such a high-�eld seeker be stably levitated and

trapped near L?
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Calculation of the Electric Potential and Field of a Charged Ring The electric potential

at the �eld point P due to a charge element dq0 of the ring is given in by

d� =
dq0

r
(404)

where the distance r from the source point, whose coordinates are (x0; y0; 0), to the �eld point P ,

whose coordinates are (x; 0; z), is

r =
p
(x0 � x)2 + y02 + z2. (405)

(Primed quantities refer to the source point; unprimed ones to the �eld point). Since the charged

ring forms a circle of radius a which lies on the horizontal x-y plane,

x02 + y02 = a2 . (406)

An in�nitesimal charge element dq0 spanning an in�nitesimal azimuthal angle of d�0 can be

expressed as follows:

dq0 =

�
Q

2�a

�
ad�0 = �

�
Q

2�a

�
ad (x0=a)p
1� (x0=a)2

(407)

where Q is the total charge of the ring. Let us introduce the dimensionless variables

�0 � x0

a
; �0 � y0

a
; � � z

a
; " � x

a
. (408)

Thus

dq0 = � Q

2�

d�0p
1� �02

.

Due to the bilateral symmetry of the ring under the re�ection y0 ! �y0, it is useful to sum up

in pairs the contribution to the electric potential from symmetric pairs of charge elements, such as

dq01 and dq
0
2 with coordinates (x

0;+y0; 0) and (x0;�y0; 0), respectively, shown in Figure 18. These
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two charge elements contribute equally to the electric potential � if they span the same in�nitesimal

azimuthal angle d�0. Thus one obtains

� ("; �) =
Q

�a

Z +1

�1
d�0

1p
1� �02

1p
"2 � 2"�0 + 1 + �2

. (409)

Along the z axis, this reduces to the well-known result

� (" = 0; �) =
Q

a

1p
1 + �2

=
Qp

z2 + a2
. (410)

The z component of the electric �eld, which is the dominant E-�eld component in the neighborhood

of point L, is given by

Ez = �
@�

@z
=

Q

�a2
�

Z +1

�1
d�0

1p
1� �02

1�p
"2 � 2"�0 + 1 + �2

�3 . (411)

Along the z axis, this also reduces to the well-known result

Ez =
Qz

(z2 + a2)
3=2

, (412)

which has a maximum value at

z0 =
ap
2
or �0 =

1p
2
. (413)

The �levitation�point L then has the coordinates

L

�
0; 0;

ap
2

�
, (414)

neglecting for the moment the downwards displacement of a light particle due to gravity.

The potential energy U for trapping a neutral particle with polarizability � in the presence of
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an electric �eld (Ex; Ey; Ez) is given by

U = �1
2
�
�
E2x + E

2
y + E

2
z

�
� �1

2
�E2z , (415)

since the contributions to U from the x and y components of the electric �eld, which vanish as "4

near the z axis for small ", can be neglected in a small neighborhood of L.

We now calculate the curvature at the bottom of the potential-energy well U along the longitu-

dinal z axis, and also along the transverse x axis. The force on the particle is given by

F = �rU . (416)

Therefore the z component of the force is, to a good approximation,

Fz = �Ez
@Ez
@z

, (417)

and the Hooke�s law constant kz in the longitudinal z direction is given by

kz = �
@Fz
@z

= ��
(�

@Ez
@z

�2
+ Ez

@2Ez
@z2

)
; (418)

where all quantities are to be evaluated at L where " = 0 and �0 = 1=
p
2. Taking the indicated

derivatives and evaluating them at L, one obtains

kzjL = +
32

81

�Q2

a6
, (419)

where the positive sign indicates a longitudinal stability of the trap in the vertical z direction.

The x component of the force is, to the same approximation,

Fx = �Ez
@Ez
@x

, (420)

185



and the Hooke�s law constant kx in the transverse x direction is

kx = �
@Fx
@x

= ��
(�

@Ez
@x

�2
+ Ez

@2Ez
@x2

)
, (421)

where again all quantities are to be evaluated at L where " = 0 and �0 = 1=
p
2. Again taking the

indicated derivatives and evaluating them at L, one obtains

kxjL = �
16

81

�Q2

a6
, (422)

where the negative sign indicates a transverse instability in the horizontal x direction.

Similarly, the Hooke�s law constant ky in the transverse y direction is

kyjL = �
16

81

�Q2

a6
, (423)

where the negative sign indicates a transverse instability in the horizontal y direction. Note that the

trap is azimuthally symmetric around the vertical axis, so that the x and y directions are equivalent

to each other. Because of the negativity of two of the three Hooke�s constants kx, ky, and kz, the

trap will be unstable for small displacements in two of the three spatial dimensions near L, and hence

L is a saddle point. Note also that the sum of the three Hooke�s constants in Equations (419),(422),

and (423) is zero, i.e.,

kx + ky + kz = 0: (424)
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Earnshaw�s Theorem Revisited We shall see that Equation (424) can be derived from Earn-

shaw�s theorem when one generalizes this theorem from the case of a charged particle to the case of

a neutral, polarizable particle in an arbitrary DC electrostatic �eld con�guration. A quantitative

consideration of the force on the particle due to the uniform gravitational �eld of the Earth, in

conjunction with the force due to the DC electrostatic �eld con�guration, does not change the gen-

eral conclusion that the mechanical equilibrium for both charged and neutral polarizable particles

is unstable.

Charged Particle Case We shall �rst brie�y review here Earnshaw�s theorem [72], which implies

an instability of a charged particle placed into any con�guration of electrostatic �elds in a charge-

free region of space in the absence of gravity. Suppose that there exist a point L of mechanical

equilibrium of a charged particle with charge q in the presence of arbitrary DC electrostatic �elds

in empty space. The potential � for these �elds obey Laplace�s equation

r2� = @2�

@x2
+
@2�

@y2
+
@2�

@z2
= 0: (425)

Now the force on the charged particle is given by

F = �qr� = �q
�
ex
@�

@x
+ ey

@�

@y
+ ez

@�

@z

�
= hFx; Fy; Fzi ; (426)

where ex, ey, ez are the three unit vectors in the x, y , and z directions, respectively. By hypothesis,

at the point L of mechanical equilibrium

@�

@x

����
L

=
@�

@y

����
L

=
@�

@z

����
L

= 0 . (427)
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Stable equilibrium would require all three Hooke�s constants kx, ky, and kz at point L to be positive

de�nite, i.e.,

kx = � @Fx
@x

����
L

= +
@2�

@x2

����
L

> 0 (428)

ky = � @Fy
@x

����
L

= +
@2�

@y2

����
L

> 0 (429)

kz = � @Fz
@x

����
L

= +
@2�

@z2

����
L

> 0: (430)

However, Laplace�s equation, Equation (425), can be rewritten as follows:

kx + ky + kz = 0; (431)

i.e., the sum of the three components of Hooke�s constants for the charged particle must be exactly

zero. The simultaneous positivity of all three Hooke�s constants is inconsistent with this, and hence

at least one of the Hooke�s constants along one of the three spatial directions must be negative.

Therefore the system is unstable.

The azimuthally symmetric �eld con�gurations like that of a charged ring is an important special

case. Let z be the vertical symmetry axis of the ring. Suppose that there is stability in the

longitudinal z direction (such as along the z axis above point L), so that

kz > 0 . (432)

By symmetry

kx = ky � k? (433)

so that Equation (431) implies that

k? = �
1

2
kz < 0 , (434)

implying instability in the two transverse x and y directions.
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Conversely, suppose there is instability in the longitudinal z direction (such as along the z axis

below point L), so that

kz < 0 . (435)

Again, by symmetry

kx = ky � k? (436)

so that Equation (431) implies that

k? = �
1

2
kz > 0;

implying stability in the two transverse x and y directions.
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Adding a Uniform Gravitational Field Such as the Earth�s, in the Case of a Charged

Object The potential energy of a charged, massive particle in a DC electrostatic �eld in the

presence of Earth�s gravitational �eld is

Utot = q�+mgz: (437)

Note that the term due to gravity, i.e., the mgz term, is linear in z, and therefore will vanish upon

taking the second partial derivatives of this term. Therefore the Hooke�s constants kx, ky, and kz

will be una¤ected by Earth�s gravity. The force on the particle is

Ftot = �rUtot = �qr��mgez (438)

where ez is the unit vector in the vertical z direction. In equilibrium, Ftot = 0, but this equilibrium

is again unstable, since upon taking another partial derivative of the term mgez with respect to z

will yield zero, and therefore all of the above Hooke�s law constants are the same in the presence as

in the absence of Earth�s gravity.
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Generalization to the Case of a Neutral, Polarizable Particle Now suppose that there

exists a point L of mechanical equilibrium of the neutral particle with positive polarizability � > 0

somewhere within an arbitrary electrostatic �eld con�guration. Such a particle is a high-�eld seeker,

and hence point L must be a point of high �eld strength. Choose the coordinate system so that the z

axis is aligned with respect to the local dominant electric �eld at point L. Thus the dominant electric

�eld component at L is thus Ez. The potential energy U for a neutral particle with polarizability �

in the presence of an electric �eld (Ex; Ey; Ez) is given by

U = �1
2
�
�
E2x + E

2
y + E

2
z

�
� �1

2
�E2z , (439)

since the contributions to U from the x and y components of the electric �eld, which vanish as "4

near the z axis for small ", can be neglected in a small neighborhood of L. The force on the particle

is

F = �rU . (440)

Therefore the z component of the force is, to a good approximation,

Fz = �Ez
@Ez
@z

, (441)

and the Hooke�s law constant kz in the z direction is given by

kz = �
@Fz
@z

= ��
(�

@Ez
@z

�2
+ Ez

@2Ez
@z2

)�����
L

= �� Ez
@2Ez
@z2

����
L

; (442)

where the last equality follows from the hypothesis of mechanical equilibrium at point L.

Similarly, the x component of the force is, to the same approximation,

Fx = �Ez
@Ez
@x

, (443)
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and the Hooke�s law constant kx in the x direction is given by

kx = �
@Fz
@x

= ��
(�

@Ez
@x

�2
+ Ez

@2Ez
@x2

)�����
L

= �� Ez
@2Ez
@x2

����
L

; (444)

where the last equality follows from the hypothesis of mechanical equilibrium at point L.

Similarly the y component of the force is, to a good approximation,

Fy = �Ez
@Ez
@y

, (445)

and the Hooke�s law constant ky in the y direction is given by

ky = �
@Fz
@y

= ��
(�

@Ez
@y

�2
+ Ez

@2Ez
@y2

)�����
L

= �� Ez
@2Ez
@y2

����
L

; (446)

where again the last equality follows from the hypothesis of mechanical equilibrium at point L.

Thus the sum of the Hooke�s law constants along the x, y, and z axes is given by

kx + ky + kz = ��
�
Ez

�
@2Ez
@x2

+
@2Ez
@y2

+
@2Ez
@z2

������
L

= �� Ez
@

@z

�
@2�

@x2
+
@2�

@y2
+
@2�

@z2

�����
L

= 0: (447)

Therefore

(kx + ky + kz)jL = 0 , (448)

and again, the sum of the three Hooke�s law constants must be exactly zero according to Laplace�s

equation.

Suppose that the system possesses axial symmetry around the z axis with

kz > 0 , (449)
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i.e., with stability along the z axis. Then by symmetry

kx = ky � k? (450)

so that Equation (448) implies that

k? = �
1

2
kz < 0 , (451)

implying instability in both x and y directions. This is exactly what we found by explicit calculation

for the case of a neutral, polarizable object near point L of the charged ring.
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Adding a Uniform Gravitational Field Such as the Earth�s, in the Case of a Neutral,

Polarizable Object The potential energy of a neutral, polarizable, massive particle in a DC

electrostatic �eld plus Earth�s gravity is

Utot = U +mgz: (452)

Again, note that the term due to gravity, i.e., the mgz term, is linear in z, and therefore will vanish

upon taking the second partial derivatives of this term. Therefore again the Hooke�s constants kx,

ky, and kz will not be a¤ected by Earth�s gravity. The force on the particle is

Ftot = �rUtot = �qrU �mgez (453)

where ez is the unit vector in the vertical z direction. In equilibrium, Ftot = 0, but this equilibrium

is again unstable, since upon taking another partial derivative of the term mgez with respect to

z will yield zero, and therefore again all of the above Hooke�s law constants are the same in the

presence as in the absence of Earth�s gravity.
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The Electric Field Distributions of a Charged Ring and a Focused Laser Beam Small

dielectric particles have been stably trapped at the maximum of the square of the electric �eld in

focused laser beams, also known as Gaussian beam waists. How is this situation di¤erent from the

case of the charged ring? Figure 19 shows a depiction of the electric �eld distributions in each case.

The electric potential for the charged ring is a harmonic function, as it solves Laplace�s equation,

which causes this distribution to be governed by Earnshaw�s theorem. While the square of the

electric �eld at point L is a local maximum in the vertical direction, it is a local minimum along the

horizontal plane, giving rise to the previously discussed transverse instability. In a focused laser

beam, however, the electric potential is a solution of the Helmholtz equation, and thus Earnshaw�s

theorem does not apply. The square of the electric �eld at the levitation point of the focused

laser beam is a local maximum in all three spatial directions, and the electric �eld strength rapidly

approaches zero outside of the beam.

Figure 19: Comparison of the electric �eld distributions of a charged ring and a focused laser beam.
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8.2.2 Ways to Evade Earnshaw�s Theorem

Some known ways to evade Earnshaw�s theorem and thereby to construct a truly stable trap for

charged particles or for neutral particles are (1) to use non-electrostatic �elds such as a DC magnetic

�eld (e.g., the Penning trap [73]) in conjunction with DC electric �elds, or (2) to use time-varying,

AC electric �elds, rather than DC �elds (e.g., the Paul trap [70]), or (3) to use active feedback to

stabilize the neutral equilibrium of a charged particle in a uniform electric �eld, such as was done

for a charged super�uid helium drop [74], or (4) to use the low-�eld seeking property of neutral,

diamagnetic objects to levitate them in strong, inhomogeneous magnetic �elds [66]. The latter two

methods may be useful for levitating the super�uid helium �Millikan oil drops� in the experiment

described in [75].
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Magnetostatic Levitation Consider a thin ring of radius R in the xy-plane with its center placed

at the origin. The ring is carrying a current I with direction parallel to di¤erential direction vector

ds. The magnetic �eld at an arbitrary �eld point (x; z) is given by the Biot-Savart law

dB =
�0I

4�

ds� r
r3

; (454)

where r is the vector that points from ds to the �eld point. The axial symmetry of the problem

allows for consideration of the �eld point to be along a single radial axis and a vertical axis only,

without loss of generality. This con�guration is shown in Figure 20.

Figure 20: A thin, current-carrying ring creates a magnetic �eld at an arbitrary �eld point given by
the Biot-Savart law.

The vectors ds and r on the right side of (454) are given by

ds = h�R sin � d�;R cos � d�; 0i (455)

r = hx�R cos �;�R sin �; zi ; (456)

in Cartesian coordinates, and thus the �eld is given by

Bring =
�0I

4�

Z 2�

0



z cos �; 0; R2 � xR cos �

�
d�

(x2 + z2 +R2 � 2xR cos �)3=2
: (457)
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To �nd the magnetic �eld of a thin shell of length L with its axis along the z-axis, and its ends

at z = 0 and z = L, (457) must be integrated with respect to z and multiplied by N
L , where N is

the number of turns in the shell. Thus,

Bshell =
�0NI

4�L

Z L

0

Z 2�

0



z cos �; 0; R2 � xR cos �

�
d� dz

(x2 + z2 +R2 � 2xR cos �)3=2
: (458)

To �nd the magnetic �eld of a thick, �nite solenoid of length L and thickness r2 � r1; where r1

and r2 are the inner and outer radii of the solenoid, respectively, with its axis along the z-axis, and

its ends at z = 0 and z = L, (458) must be integrated with respect to R and divided by r2 � r1.

Thus,

Bsolenoid =
�0NI

4�L (r2 � r1)

Z L

0

Z 2�

0

Z r2

r1



z cos �; 0; R2 � xR cos �

�
dr d� dz

(x2 + z2 +R2 � 2xR cos �)3=2
: (459)

Stable levitation can occur at minima in the total potential energy density u, which consists of a

magnetic �eld term and a gravitational �eld term. The expression for this potential energy density

is

u = uB + ug =
B2

2�0
+ �gz: (460)

There are no local extrema in the potential energy density for a single coil, but two coaxial coils,

separated by distance d and oriented such that their �elds are anti-parallel have zero potential energy

density at z = L+d=2, which is a local minimum. The magnetic �eld of the second coil can be found

using the replacements I ! �I and z ! d� z in (459), and the two can be added vectorially to �nd

the total �eld. When the radius of two identical coils in this con�guration is equal to the separation

distance, the system is commonly called a set of �anti-Helmholtz coils,�or �Helmholtz coils�when

the �elds are parallel. A contour plot of the potential energy density, where the magnetic term

is produced by a set of oppositely-oriented coils, is shown in Figure 21. The closed contour in

the center of the coils contains the local minimum, where stable levitation of a perfect diamagnet

(e.g. superconductor) can occur. The magnetic �eld was calculated numerically, using a Gaussian

quadrature method.
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Figure 21: Contour plot of potential energy density in a DC homogeneous gravitational �eld and
a inhomogeneous magnetostatic �eld for perfect diamagnets with mass density � = 1 g/cm3 . The
two small closed curves contain local minima at which the diamagnets can be stably levitated.

Two superconducting samples will be stably levitated at these local minima, as long as they are

su¢ ciently small. This requirement is not due to the necessity of a small mass, since the location

of the potential minima is dependent on the mass density, and not the mass itself, but due to the

fact that the superconductors must remain within a region where the magnetic �eld is below the

critical �eld of the superconducting material used. Though the �gure depicts local minima for

perfect diamagnets with a fairly low mass density, the complete expulsion of the magnetic �eld from

the interior of the superconductor will occur as long as the superconducting portion of the sample

is thicker than the London penetration depth, which tends to be on the order of tens of nanometers

for Type-I superconductors. Thus, the sample need not be a solid superconductor.

Another aspect to consider is the depth of the potential energy wells. The depth must be

su¢ ciently large for stable levitation to be maintained if the system is perturbed. In performing

a Taylor expansion of the total potential around the levitation points, it was found that, for small

displacements from equilibrium (around 1 mm), the oscillation frequencies are on the order of tens

of Hertz in all three spatial directions, and the center of mass of the samples can be moved up to a

few centimeters in any direction before they are pulled out of the potential well.
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The �nal concern is the value of the magnetic �eld at points near the levitation point. If the

value of the magnetic �eld is too high, the superconductor will be driven normal, lose its perfect

diamagnetism, and will no longer be levitated by the �eld. The magnetic �eld at the levitation

point is approximately 200 G. Though this is above the critical �eld of aluminum near absolute zero

temperature (approximately 100 G), it is below the critical �eld of lead, which is approximately 800

G. If the levitated spheres can have a diameter of less than approximately 1.5 cm, they will remain

completely within a region that is below the critical �eld, and thus will remain superconducting.
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9 Conclusions

Many research possibilities, both theoretical and experimental, arising from the incompressibility of

the quantum mechanical wavefunction have yet to be explored. Though di¢ cult to perform, an

experiment to detect the transition frequency shift in a Rydberg atom in curved space (such as in

a highly-elliptical orbit around the Earth) may yield interesting results if and when the technology

becomes available to make this endeavor more practical. Upon calculating energy shifts both in the

Parker and DeWitt cases, many patterns arose, and it would be useful to construct a comprehensive

mathematical model that explains these trends. Though some of those trends were explained in

this work, a full model was not developed.

Successful, e¢ cient implementation of the transduction between gravitational and electromag-

netic radiation would revolutionize communications, as the attenuation by massive objects that

a¤ects electromagnetic radiation is practically invisible to gravitational radiation. Furthermore,

wireless power transfer may become a possibility as well, through the generation of electrical power

through time-varying gravitational �elds.

Experimental detection of the behavior of quantum-mechanically coherent systems in inhomo-

geneous gravitational �elds may lead to a better understanding of the interface between quantum

mechanics and general relativity, where some inconsistencies arise. The scenarios outlined in this

work are but a fraction of the total number of possibilities that would come out of di¤erent behavior

between quantum and classical matter in the presence of gravitational �elds.
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Now, the dispersion relation for de-Broglie matter waves is given by

! =
~k2

2m
,

which leads to

vgroup �
d!

dk
=
~
m
k

vphase �
!

k
=
1

2

~
m
k .

Hence the velocity v given in (234), which is associated with the probability current density j

given in (222), is the group velocity, and not the phase velocity, of a Cooper pair.

[52] Note that the jG and Ftot will be nonzero as long as the Schi¤-Barnhill e¤ect [15]

qE+mg = 0 ,
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which is present in a normal metal, is absent in the superconductor. The static mechanical

equilibrium represented by the equation above is never achieved inside a superconductor, since

the establishment of such equilibrium requires the action of dissipative processes that are present

in a normal metal but absent in a superconductor. In particular, we should expect a large

breakdown of the Schi¤-Barnhill e¤ect at microwave frequencies, when plasma oscillations of

the superconductor can in fact be excited purely electromagnetically.

[53] Only a certain amount of current can exist in the �lm before it is driven normal by the resulting

magnetic �eld. It is therefore important to take into account the critical �eld of the supercon-

ducting �lm when considering the linear response of the �lm to any incident radiation. In the

EM sector, it can be shown using the Poynting vector that an incident wave-power �ux density

of 10 Watts per square meter will induce a magnetic �eld of 2 milli-Gauss, which is �ve orders

of magnitude below the critical magnetic �eld of lead at temperatures well below Tc. Alter-

natively, lead will remain superconducting for incident power �ux densities below tera-Watts

per square meter. The critical magnetic �eld of a superconductor is related to the Helmholtz

free energy density of the superconducting state stored in the condensate [25], which in turn

is related to the BCS energy gap. This gap is related only to quantities that correspond to

intrinsic properties of the superconductor, and not to any coupling to external �elds. Exactly

the same considerations will thus apply in the GR sector. The critical gravito-magnetic �eld of

a superconductor will correspond to the same free energy density as the critical magnetic �eld,

and a GR wave containing a power �ux density of 10 Watts per square meter will produce a

gravito-magnetic �eld that lies equally far below the critical gravito-magnetic �eld.

[54] One should regard (256) as a quantum-mechanical operator equation of motion for the Cooper

pair�s charge density operator �e and mass density �G operator, which are related to the

quantum-mechanical density operator � = j i h j by

�e = q j i h j and �G = m j i h j ,
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respectively. Similarly, the probability current density j, the quantum velocity �eld v, and the

acceleration �eld a of the superconductor are also quantum operators.

[55] This applies to non-zero frequencies only, since at DC, the mass conductivity �1,G , like the

charge conductivity, is in�nite, i.e., where

�1,G = AG� (!)

for some constant AG .
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