
UNIVERSITY OF CALIFORNIA , MERCED

PH.D. DISSERTATION

Modeling Dependence in Data: Options

Pricing and Random Walks

Nitesh Kumar

A dissertation submitted

in partial fulfillment of the requirements for the degree

Doctor of Philosophy in Applied Mathematics

March, 2013



UNIVERSITY OF CALIFORNIA , MERCED

Graduate Division

This is to certify that I have examined a copy of a dissertation by

Nitesh Kumar

and found it satisfactory in all respects, and that any and all revisions

required by the examining committee have been made.

Faculty Advisor:

Committee Members:

Applied Mathematics Graduate Studies Chair:

Harish S. Bhat

Arnold D. Kim

Roummel F. Marcia

Boaz Ilan

Arnold D. Kim

Date



Contents

1 Introduction 2

1.1 Brief Review of the Option Pricing Problem and Models . . . . .. . . . . . . . . 2

2 Markov Tree: Discrete Model 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7

2.3 Past Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Order Estimation: Methodology . . . . . . . . . . . . . . . . . . . . .. . . . . . 9

2.5 Order Estimation: Results . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 13

2.6 Markov Tree Model: Theory . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 14

2.6.1 No Arbitrage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Implementation Notes. . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18

2.7 Tree Model: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18

2.7.1 Comparison of Model and Market Prices. . . . . . . . . . . . . . .. . . . 19

2.7.2 Comparison of Volatilities. . . . . . . . . . . . . . . . . . . . . . .. . . . 20

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Markov Tree: Continuous Model 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 25

3.2 Markov Tree Generation and Computational Tractability .. . . . . . . . . . . . . 26

3.2.1 Persistent random walk . . . . . . . . . . . . . . . . . . . . . . . . . .. . 27

3.2.2 Number of states in a tree of fixed depth . . . . . . . . . . . . . .. . . . . 28

3.2.3 Markov tree probability mass function . . . . . . . . . . . . .. . . . . . . 28

3.3 Continuous Approximation of the Markov Tree . . . . . . . . . . .. . . . . . . . 30

3.3.1 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Exact solution in Fourier space . . . . . . . . . . . . . . . . . . .. . . . . 31

3.3.3 Numerical solution in real space . . . . . . . . . . . . . . . . . .. . . . . 31

3.3.4 Asymptotic solution in real space . . . . . . . . . . . . . . . . .. . . . . 32

i



3.3.5 Comparison of the distribution functions for the Markov tree . . . . . . . . 35

3.4 Option Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35

3.5 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 37

3.5.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 38

3.5.2 Empirical density functions for stock log returns . . .. . . . . . . . . . . 40

3.5.3 Comparing model and market option prices . . . . . . . . . . . .. . . . . 41

4 Large-Scale Empirical Testing 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 47

4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Option Pricing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 50

4.2.1 Black-Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Heston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.3 Markov Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

4.3.1 Black-Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Heston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Markov Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Out-of-Sample Pricing Error . . . . . . . . . . . . . . . . . . . . .. . . . 56

4.4.2 Out-of-Sample Hedging Error . . . . . . . . . . . . . . . . . . . . .. . . 57

4.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 LIFFE Paris individual equity options . . . . . . . . . . . . .. . . . . . . 58

4.5.2 SPX options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.3 Interest rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

4.5.4 Dividends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Comparison of different option pricing models . . . . . . .. . . . . . . . 60

4.6.2 Performance of MT model regression procedures . . . . . .. . . . . . . . 62

4.7 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 64

4.7.1 In-Sample Error Analysis . . . . . . . . . . . . . . . . . . . . . . . .. . 64

4.7.2 MT Model Performance: Perturbed Regression Coefficients . . . . . . . . 65

5 Generalization of the Markov Tree Process 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 74

5.2 Delayed Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

ii



5.3 Spectral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 76

5.4 Modified Tree Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Maximum Likelihood Estimation in Markov Chains 91

A.1 MLE’s for k-th order Markov chain withQ symbols . . . . . . . . . . . . . . . . . 91

B Expressions in the Markov Tree model 93

B.1 Expressions forµ1,2 andσ1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2 Gradient vector for the MT objective function. . . . . . . . . .. . . . . . . . . . . 95

B.3 Delta neutral in the MT model. . . . . . . . . . . . . . . . . . . . . . . . .. . . . 99

iii



Acknowledgements

This thesis and my sanity would not be intact if it had not beenfor my advisor Harish Bhat. I thank

Harish for taking me under his wings early in Fall, 2008 when Iwas still trying to find my feet

in academia and research. His uncanny ability to recognize both my failures and successes well

before I could is what has brought this thesis to its timely conclusion. I thank Harish for the past

five years of advising and friendship and many more years to come.

My next main academic sources of influence have been my committee members Arnold

Kim and Roummel Marcia who have provided me with constant encouragement all through my

graduate career. Their academic jokes and anecdotes will surely keep me smiling for long.

I thank Francois Blanchette and Lei Yue for making me and otherinternational students feel

at home through yearly Christmas celebrations at their place. I also thank Francois for numerous

times he listened to me and helped me out with my indecisions.

At UC Merced, I learnt much of the mathematics that allowed meto undertake this thesis

and complete it. To this I am forever thankful to the professors who taught me here– Boaz Ilan,

Mayya Tokman, and Arnold Kim. I also thank Carrie King for her valuable support over the years

and making academic paper work less tedious.

Through my years in graduate school, I also made long lastingfriends who made my life at

UC Merced fun filled and exciting. I thank Jane for inspiring me when disappointment started to

raise its ugly head. I also thank her for sweating it out together seeing the funny side of academic

proceedings. I also thank Derya for years of companionship and fruitful discussions about research

in particular and life in general. She ensured I stayed logical and reasonable at all times despite

my attempts at the exact opposite. I have learnt more from these two ladies than I could have ever

hoped to learn from any other colleagues or friends.

I also take this opportunity to thank Garnet, my friend, academic brother, and roommate of

three years. His cooking ensured that I never missed home cooked Indian food. I also thank him

for insightful discussions over my research, and his quick,often unforgiving feedback.

Finally, I thank my parents who have inspired me to chase my dreams. I also thank my

brother for kindling in me the passion for mathematics and research at an early age. He has done

more than he will ever take credit for.

iv



v



Modeling Dependence in Data: Options Pricing and Random Walks

by

Nitesh Kumar

University of California, Merced, 2013

Prof. Harish S. Bhat, Chair

ABSTRACT OF THE DISSERTATION

In this thesis, we propose the Markov tree option pricing model and subject it to large-scale empir-

ical tests against market options and equity data to quantify its pricing and hedging performances.

We begin by proposing a tree model that explicitly accounts for the dependence observed in

the log-returns of underlying asset prices. The dynamics ofthe Markov tree model is explained

together with implementation notes that enable exact calculation of the probability mass function

of the Markov tree process. We also show that the tree model operates in the framework of arbitrage

free option pricing.

Next, we show how the discrete Markov tree process can be viewed as a generalized per-

sistent random walk and demonstrate how to approximate it bya mixture of two normals. This

derivation enables us to obtain a closed form pricing formula for the European call option allow-

ing for faster calibration using market option data. We thenempirically test both the pricing as

well as the hedging performance of the Markov tree model against the Black-Scholes and the He-

ston’s stochastic volatility models establishing its superior hedging performance. Additionally, we

also analyze different regression based techniques to estimate the parameters in the Markov tree

model that obtain increasingly better hedging results. We also lay down statistical procedures to

rigorously analyze the hedging performance of any option pricing model.

We then generalize the Markov tree process and explore its relation with the generalized

delayed random walk. In doing so, we develop a spectral method for computing the probability

density function for delayed random walks; for such problems, the spectral method we propose

is exact to machine precision and faster than existing methods. In conjunction with step function

approximation and the weak Euler-Maruyama discretization, the spectral method can be applied

to nonlinear stochastic delay differential equations. We carry out tests for a particular nonlinear

SDDE that shows that this method captures the solution without the need for Monte Carlo sam-

pling.
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Chapter 1

Introduction

Substantial development in computational power and storage space have enabled researchers to

analyze data more than ever before. Financial data, specifically, is not just readily available but

requires little to no cleaning unlike the data sets appearing in other fields. This recent development

has made it possible for researchers to test the assumptionsmade in financial models and also

empirically evaluate the performance of such models. In this dissertation, we use data driven

mathematical models to solve the option pricing problem that arises in mathematical finance and

further generalize these techniques to develop methods to solve problems arising in neuroscience

and biology.

1.1 Brief Review of the Option Pricing Problem and Models

The fundamental problem in mathematical finance is the option pricing problem that, at the face of

it involves calculating the fair price of an option given theoption parameters and the spot (current)

price of its underlying. A European style call (put) option is a financial contract that gives the

buyer theoption (i.e. the right without the obligation) to buy (sell) the underlying instrument at

a given price called thestrikeprice at a particular date in future calledexpiry. If the buyer of the

European call (put) option chooses to exercise the right, then the seller is under the obligation to

fulfill it by selling (buying) the underlying instrument at the strike price when the option expires.

A closed form option price is highly desirable– apart from calculating the price of the option,

such a formula enables traders and practitioners to create arisk free portfolio and hedge market

risk. The 1987 crash and the current financial crisis (2008–present) have brought to light poor risk

management that, in turn, are consequences of poor option pricing models. Since mathematical

models for option pricing form the basis of risk management,the current crisis has revealed more

than ever before that the option pricing problem is far from solved.

The basic ingredient in any option pricing model is the stochastic process for the asset price.
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Hence, it is not surprising that much of the research in option pricing is driven by the quest to

incorporate a stochastic process that agrees well with the observed asset prices. The first popular

mathematical model to price options, the Black-Scholes (BS) model used the now famous no

arbitrage argument to arrive at the fair price of a European option Black and Scholes (1973). In

their work, they modeled the stock price process as a geometric Brownian motion (gBm) to obtain a

closed form expression for the European option price. The proposition that the stock price process

is actually a gBm has met with a lot of criticism mainly due to its inability to capture tail behaviour

in the stock returns observed during a crash (MacKenzie, 2004). Empirical research has also

validated that the observed log returns of stocks have heavier tails than the normal distribution,

skewness, and positive excess kurtosis (Cont, 2001; Campbellet al., 1997; Barone-Adesi, 1985;

Longin, 2005; Behr and P̈otter, 2009). While these inconsistencies remain, the BS model has

several upshots. First, the BS model gives a simple closed form analytical expression for the

option price enabling faster computation of the option price. Second, the Black-Scholes model is a

one parameter model keeping its calibration to market option prices tractable and computationally

inexpensive. Third, the BS model is based on the principles ofthe well accepted arbitrage free

pricing theory. Finally, the binomial option pricing modelthat converges to the BS model is a tree

model that facilitates understanding of the stock price movements at discrete time steps1 in the BS

model Cox et al. (1979). Option pricing models that attempt toincorporate the observed features

noted above in the log returns of the stock price process are increasingly complicated and often fail

to retain the upshots of the BS model.

Another feature of the gBm assumption in the BS model is that thelog returns of the stock

price process are assumed to be independently and identically distributed (IID). This can be easily

understood by studying the binomial tree model that converges to the BS model in the limit as

the time duration of each time step in the tree goes to zero. Inthe binomial tree model, the log

return of the stock price process is assumed to follow a simple biased random walk where both the

increments and the probabilities associated with the increments are constant. Hence, it is easy to

note that every step of the binomial tree is independent of its previous steps. While the deviation

of the observed log returns from the normal distribution hasbeen well studied in literature, the

IID assumption has been rarely addressed before. Empiricalstudies on markets on the other hand

indicate that the daily log returns of stocks arenot generated from an IID process (Ding et al.,

1993; Lo and MacKinlay, 1988)2 The IID hypothesis is extensively tested by studying the auto-

correlation of the transformed time series{|Xn|λ}, λ ∈ 1, 2, . . .3 (Ding et al., 1993). Significant

1In reality the stock price process only changes at discrete time intervals.
2Although the log returns time series is not IID, there is little predictability due to zero autocorrelation of the time

series observed (French and Roll, 1986; Lo and MacKinlay, 1990; Blair et al., 2002).
3If {St}nt=0 is the stock price time series at equispaced intervals of time, then the log returns time series{Xt} is

defined asXt = log(St+1/St).
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positive autocorrelation at lags 1-5 of the process{|Xn|λ} is enough to reject the IID hypothesis

for the original log returns time series{Xn} (Taylor, 2007, Chap. 4). Building upon the bino-

mial model, multinomial models like a trinomial model and its extension (Kamrad and Ritchken,

1991), a pentanomial model that accounts for skewness and kurtosis observed in the underlying

asset (Primbs et al., 2007), and an octanomial tree for the stock price (Leisen, 2000) have been pro-

posed. The quadrinomial tree model (Florescu and Viens, 2008) accounts for stochastic volatility

in its tree model, like its predecessor (Aingworth et al., 2006). Even though these models provide

a simple understanding of the stochastic process assumed for the stock price by accounting for

different features observed in the stock price process, none of these models explicitly account for

the non-IID behaviour reflected in the observed log returns.In Chapter 2, we propose the Markov

tree model for option pricing that explicitly accounts for the non-IID behaviour observed in the

log returns through a simple tree model in the framework of classical arbitrage free pricing. In the

same Chapter, we also propose a method to test dependence in observed log returns of the stock

price process. Testing the Markov tree model against marketoptions data on six different stocks

for a period of 45 trading days from the Paris stock exchange leads us to conclude that explicitly

accounting for the non IID behaviour leads to better pricingperformance when compared to the

Black-Scholes model.

While practitioners find it easy to understand the discrete time evolution of the stock price

process through a tree model, they are numerically expensive to calibrate against market data by

virtue of being a discrete model. Hence, a continuous model that leads to a closed form Eu-

ropean option price is highly desirable. The Black-Scholes model discussed above is one such

model that provides a closed from European call option price. It assumes that the underlying

asset follows a geometric Brownian motion: ifSt is the price of the underlying at timet, then

dSt = µStdt + σStdWt, whereµ andσ are constants andWt is a Brownian motion. It follows

that the Black-Scholes model assumes (i) normality of daily log returns, and (ii) independence of

increments. In Chapter 3, we examine in detail, both theoretically and empirically, the MT model

in which both assumptions are removed. By construction, the MT model accounts for the serial

dependence of log returns. As we show in Chapter 3, the distribution generated by the MT model

is closely approximated by a mixture of normals leading to a closed form pricing formula for the

European call option. Through 10 days of empirical testing on options traded on 89 of the S&P

100 components, we establish that the MT model prices are closer on average to the market prices

than the BS model prices.

The Black-Scholes option price is extremely close to the truemarket option price for at the

money (ATM) options. However, for in the money (ITM) optionsand out of the money (OTM)

options, the BS price does not agree well with the market option price. The BS formula can be

easily inverted to calculate the volatility (commonly referred to as the implied volatility) for which

4



BS formula gives the exact market price. The ITM and OTM options are known to have higher

implied volatility than the ATM options, a phenomenon commonly known as the volatility smile.

This implied volatility is also known to change with the expiration and is referred to as the term-

structure. These observations regarding the smile and the term structure have cast significant doubt

over the constant volatility assumption in the Black-Scholes model. As a result, a number of option

pricing models have emerged that treat the volatility as a stochastic random variable. Typically,

the volatility is modeled as a stochastic process that is governed by a Brownian motion that is

correlated with the Brownian motion driving the stochastic process for the stock price (Heston,

1993; Hagan et al., 2002). These stochastic processes fit themarket option prices very well but do

not confirm to the classical arbitrage free pricing framework. Generalizations of these stochastic

volatility model involve, incorporating jumps in the stockprice process, assuming a stochastic pro-

cess for the interest rates, and, combining both these features Bakshi et al. (1997). Empirical tests

Bakshi et al. (1997); Kaeck (2012) against market data shows that the stochastic volatility models

produce better pricing than the Black-Scholes model. They also conclude that generalizations of

the stochastic volatility models noted above do not necessarily improve the hedging performance

of Heston’s stochastic volatility model. While the option price can always be looked up from the

market a closed form option pricing formula is required to create a risk-free portfolio and hedge

market risk. It is for this reason that any option pricing model should be evaluated through its

hedging performance and its ability to hedge market risk Kaeck (2012).

In Chapter 4, we subject the Markov tree model to empirical tests against the most popular

stochastic volatility model, the Heston’s stochastic volatility model Heston (1993). Using over

three years of Paris LIFFE equity options data, we conclude that the Markov tree model outper-

forms both the Black-Scholes model and Heston’s stochastic volatility model in terms of out-of-

sample hedging performance. Empirical tests on two years ofS&P 500 index options confirm the

conclusions made from the Paris LIFFE equity options.

The Markov tree stochastic process captures key features ofthe stock price process that in

turn lead to better hedging performance than other option pricing models considered in this thesis.

In Chapter 5, we seek to generalize the Markov tree stochasticprocess to model other stochastic

processes arising in biology and neuroscience. We show thatthe generalization of the Markov tree

process can be viewed as a delayed random walk and further develop a spectral method to obtain

the probability mass function of such a random walk. Througha step function approximation, we

show how this numerical method can be used to solve for a stochastic delayed differential equation.

5



Chapter 2

Markov Tree: Discrete Model

2.1 Introduction

In the Black-Scholes model for the price of a European option,one of the main assumptions is that

the price of the underlying asset follows a geometric Brownian motion (Hull, 2009). IfSt is the

underlying asset price at timet, one assumesdSt = µStdt+ σStdWt, whereµ andσ are constants

andWt is a Brownian motion. For fixedt > 0, defineXn = log(S(n+1)t/Snt). Then

Xn =

(
µ− σ2

2

)
t+ σ

(
W(n+1)t −Wnt

)
.

SinceWt is a Brownian motion,W(n+1)t −Wnt is normally distributed with mean0 and variance

t. This implies thatXn is normally distributed with mean(µ − σ2/2)t and varianceσ2t, i.e., the

distribution ofXn does not depend onn, so eachXn is identically distributed. Moreover,Xn+1 is

independent ofXn, so

P (Xn|Xn−1) = P (Xn) (2.1)

for all positive integersn, and hence the{Xn} sequence is IID (independent and identically dis-

tributed).

In fact, (2.1) follows from assumptions that are much more general than the geometric Brow-

nian motion assumption; for example, if we takeSt = S0 exp(Lt) whereLt is anyLévy process,

(2.1) still holds. The upshot is that most options pricing models in use—including Black-Scholes,

binomial, and most jump-diffusion models—implicitly assume that the daily log returns for any

stock are IID. With this in mind, the plan for this Chapter is asfollows:

1. We first check whether (2.1) is consistent with real data. To do this, we apply order estimators

to log return time series data for European stocks in the CAC-40index. For several stocks,

we find that (2.1) can be rejected in favor of a first-order Markov model for the stock price

6



Strike Market Black-Scholes Markov Tree
40 34.49 36.57 35.85
48 27.48 29.85 28.09
56 20.90 23.96 20.83
60 17.78 21.36 17.53
64 15.03 18.99 14.53
72 10.00 14.90 9.55
80 6.26 11.60 5.94
88 3.70 8.99 3.53
120 0.32 3.17 0.32
160 0.01 0.87 0.01

Table 2.1: Market and model prices (ine) for a particular European call option on August 24,
2009.

process.

2. We modify the standard binomial tree model to formulate a method for pricing options that

is valid when (2.1) is not. We introduce first-order Markov behavior of the underlying asset

into the tree, by allowing the jumps of the tree to depend on whether the previous jump was

an upward or downward jump. We refer to this model as the Markov Tree (MT) model.

3. Finally, we test the MT model against the standard Black-Scholes model. We find that the MT

model’s option prices are much closer to market prices than the Black-Scholes model’s prices.

As a preview of our results, we present Table 2.1, which compares model and market prices

on August 24, 2009, for a particular European call option.

2.2 Motivation

Let us discuss Table 2.1 in greater detail. On August 24, 2009, we obtained from euronext.com

the end-of-day market prices for European call options for Air Liquide (symbol: AI) expiring in

September 2010. We have tabulated the market prices together with prices calculated using the

Black-Scholes (Black and Scholes, 1973) model and the MT modelintroduced in this Chapter. To

calculate prices using the Black-Scholes model, we require two parameters, the risk-free interest

rater and the volatilityσ. Using standard estimation procedures from empirical data1, we obtain

1We estimate the risk-free rate using the no-arbitrage futures pricing formulaF = Sert; hereF is the futures
price,S is the spot price, andt is the time until expiration of the futures contract. On August 24, 2009, we found that
S = 75.43 andF = 75.658 for the AI future expiring in December 2009, which also givest = 84 trading days=
0.33 years. This yields an annualized risk-free rate ofr = 0.0090543. To estimate the volatility, we start with 252
trading days (or one year) of the adjusted closing price for AI, which we represent as{S1, S2, . . . , S252}. We then
calculateσ̂, the standard deviation of the log return sequence{logS2/S1, logS3/S2, . . . , logS252/S251}; this yields
the annualized volatilityσ = σ̂

√
252 = 0.41632. This follows (Hull, 2009, Chap. 13).

7



r = 0.00905453 andσ = 0.41632. The MT model uses these two parameters together withσ+ and

σ−, which are the volatilities on days where the stock’s returnincreased (forσ+) or decreased (for

σ−) relative to the previous day’s return2.

Examining Table 2.1, we find that for a strike ofe40, the Black-Scholes model’s price

is only 6% greater than the market price, but as the strike increases and exceeds the spot price

of e75.43, the Black-Scholes model’s price diverges considerably. For example, at a strike of

e88, the Black-Scholes model’s price is143% greater than the market price. This well-known

divergence is usually explained through the dependence of volatility on the strike price. For each

strike, one computes the value of the volatility such that the Black-Scholes model price matches

the market price. When the resulting implied volatilities are plotted versus strike price, one obtains

the classic volatility smile (Hull, 2009, Chap. 16).

We do not dispute that volatility should vary in some way as a function of option strike

and time until expiry. However, in the absence of an exact form of this quantitative dependence,

we ask: do we know for sure that the discrepancy between Black-Scholes and market prices is

dueentirely to the volatility smile? Our view is that, for certain options, the discrepancy is at

least partially due to the market’s knowledge that today’s returns alter or influence the probability

distribution of tomorrow’s returns. Unlike commonly used option pricing models, the MT model

accounts for this, and as shown in Table 2.1, it is significantly more accurate than Black-Scholes

for out-of-the-money options, with no strike-dependent volatilities used for either model. Though

the MT model does not provide an analytical formula for the option price, it is computationally

tractable thanks to a large amount of recombination in the price tree for the underlying asset. We

revisit these implementation issues later in the Chapter.

2.3 Past Work

Before continuing with the plan of the Chapter given in Section2.1, we discuss relevant past work.

A k-th order Markov chain is defined as a sequence{Yn}n≥1 of random variables such that

P (Yn|Yn−1, . . . , Y1) = P (Yn|Yn−1, . . . , Yn−k).

In a k-th order Markov chain, the current stateYn is allowed to depend only on the pastk states.

Theorder estimation problemis to takeN observationsy1, . . . , yN generated by a Markov chain

(of unknown order) and return an estimatek̂ of the chain’s order. The estimator isconsistentif, as

the number of observationsN goes to infinity,̂k converges to the true orderk of the Markov chain.

2The parametersσ± are calculated in precisely the same way asσ, except that forσ+ we take the standard deviation
of log returns on days when the stock’s return increased, while for σ− we take the standard deviation of log returns on
days when the stock’s return decreased. This is discussed ingreater detail in Section 4.3.

8



In our work, we make use of the provably consistent BIC order estimator (Csisźar, 2002).

In the context of jump-diffusion models, the IID assumptionhas been examined recently by

Câmara and Li (Camara and Li, 2008), who discuss several empirical studies that have rejected

that stock jumps are IID. The focus of their paper is the development of a jump-diffusion options

pricing model that does not assume the jumps are IID. Their work differs from ours in two ways: (1)

non-IID behavior is modeled only through the jumps (and not through the diffusion) of the jump-

diffusion process that the underlying asset is assumed to follow, and (2) the means and variances

of the jumps are allowed to be time-varying. By comparison, because the MT model is discrete

in time, every stock price path is a sequence of jumps—non-IID behavior is not confined to one

part of the model. We make no claims about the limit of the MT model as the number of steps

becomes infinite. However, we do assume that the magnitudes of possible jumps remain constant

throughout the price tree.

Markov and semi-Markov processes, including processes with finite state spaces, have been

used to price options (Janssen et al., 1997; D’Amico et al., 2009). Though these works assume that

the log return processlog(St/St−1) follows some type of discrete-time Markov or semi-Markov

process, the tree models that are proposed differ from the MTmodel in one important regard:

starting from any vertex of the tree, themagnitudesof the up and down jumps are always the same.

The same is true in models where a Markov chain is used to approximate the true underlying

process—see (Duan and Simonato, 2001), for instance. In theMT model, if we start from a vertex

such that the jump leading to that vertexwas an upward jump, then we have different up/down

magnitudes as compared with a vertex such that the jump leading to that vertexwas a downward

jump. In other words, the magnitudes of the jumps in the MT model’stree possess the first-

order Markov property. This same property distinguishes the MT model from other tree models

that involve trinomial, pentanomial, or more general branching at tree vertices—see (Primbs et al.,

2007; Yamada and Primbs, 2002).

2.4 Order Estimation: Methodology

Here we describe the methods used to test (2.1) against real data. We begin with a time series

{s0, . . . , sN} consisting of the adjusted daily closing price of a given stock. We definexn =

log(sn/sn−1) and obtain the log return time series{x1, . . . , xN}. Note that each element of

this time series is real-valued. To apply Markov order estimation, we must first convert the

log return time series into a sequence of symbols drawn from afinite set. As in prior work

(McQueen and Thorley, 1991; Tan and Yılmaz, 2002), the simplest way to do this is with just

9



two symbols. We therefore define

zn =




u xn ≥ 0

d xn < 0,
(2.2)

where the symbolsu andd stand for “up” and “down,” respectively. Note that this transformation

erases the magnitudes of the upward/downward movements of the stock. Now that we have a

sequence{zj}Nj=1 of u’s andd’s, we can begin to extract maximum likelihood estimates (MLE’s)

of Markov chain transition probabilities. Let us describe how this is done.

By the definition given in Section 2.3, a zeroth-order Markov chain is simply a sequence of

IID random variables. Since eachzj in our sequence can be in one of only two possible states,

if the sequence was generated by a zeroth-order Markov chain, then eachzj was generated by a

Bernoulli random variable with only one parameter:p = P (u), the probability of obtainingu. In

this case,1− p = P (d). In this case, we define the zeroth-order log likelihood

L0(p) = nu log p+ nd log(1− p),

wherenu is the number ofu’s observed in the sequence,nd = N−nu is the number ofd’s observed

in the sequence, andN is the total length of the sequence. SolvingdL0/dp = 0 for p gives the

MLE p̂ = nu/N , which is in fact the maximizer ofL0(p). Using this MLE, we can compute the

maximum valueL0(p̂).

Let us now redo this calculation assuming that the sequence{zj}Nj=1 was generated by a first-

order Markov chain. Now we require three parameters,p1 = P (u), p2 = P (u|u) andp3 = P (d|d).
Note thatp1 is necessary to handlez1, the first element of the sequence. Also note thatP (d|u) =
1− p2 andP (u|d) = 1− p3. Putting it all together, we obtain the first-order log likelihood

L1(p1, p2, p3) = m log p1 + (1−m) log(1− p1) + nuu log p2 + nud log(1− p2) (2.3)

+ ndd log p3 + ndu log(1− p3).

Herem = 1 if z1 = u andm = 0 if z1 = d. The notationnστ denotes, for any choiceσ, τ ∈ {u, d},

the number of times the stringστ was observed in the sequence. Now solving∂L1/∂pj = 0 for

pj, j = 1, 2, 3 yields the MLE’s

p̂1 = m

p̂2 =
nuu

nuu + nud

=
nuu

# of u in firstN − 1 slots

p̂3 =
ndd

ndd + ndu

=
ndd

# of d in firstN − 1 slots
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k̂

0 1 2

k

0 966 33 1

1 180 818 2

2 28 116 856

Table 2.2: The(k, k̂) entry equals the number of times the BIC order estimator returned an order
of k̂, when applied to a random sequence of lengthN = 500 generated by a randomly gener-
ated Markov chain of true orderk. For results in this table, transition probabilities were drawn
uniformly from (0, 1) ⊂ R.

Using these MLE’s, we can calculate the maximum valueL1(p̂1, p̂2, p̂3).

Following the same methodology, we can assume that the sequence{zj}Nj=1 was generated

by ak-th order Markov chain and then write down thek-th order log likelihood functionLk of the

unknown Markov transition probabilitiesp = (p1, . . . , pM). We plug intoLk the frequencies of

different strings found in the actual{zj}Nj=1 sequence and then maximizeLk overp. We thereby

find both the MLE’sp̂ = (p̂1, . . . p̂M) as well as the maximum value of the log likelihoodLk(p̂).

The calculations are carried out in the Appendix A, for a sequence that is assumed to be ani-th

order Markov chain overQ states. (In the above discussion, we treated only theQ = 2 case.)

Armed with this information, we employ the BIC (Bayesian Information Criterion) order

estimation method. We calculatef(j,N) = Lj(p̂)− 2j−1 log(N), looping over values ofj from 0

toK. The BIC order estimatêk equals the value ofj that maximizesf(j,N). In the limit where

the number of data points is infinite,N → ∞, it has been proven that the BIC estimate converges

to the true order of the Markov chain generating the data (Csiszár, 2002).

Though the theoretical results on BIC order estimation with an infinite amount of data are

encouraging, they are obviously not strictly applicable toour situation, where the length of the

time series is finite. To remedy this, we study the performance of BIC order estimation on finite,

synthetic data sets.

For k ∈ {0, 1, 2}, we randomly generate transition probabilities for ak-th order Markov

chain. Each probability is drawn uniformly from the interval (0, 1). Using this Markov chain, we

generate a sequence of lengthN = 500. We apply BIC order estimation to this sequence and

thereby obtain an estimatêk of the Markov chain’s order. The results are summarized in Table 2.2.

When we apply BIC order estimation, we loop over possible orders j = 0, 1, 2, . . . , 8. However,

in no instance do we find that the estimatek̂ exceeds two. This can be seen by noting that for

each value ofk, we randomly generated exactly1000 sequences, and each row of the table sums

11



k̂

0 1 2

k

0 983 17 0

1 686 312 2

2 758 182 60

Table 2.3: The(k, k̂) entry equals the number of times the BIC order estimator returned an order
of k̂, when applied to a random sequence of lengthN = 500 generated by a randomly gener-
ated Markov chain of true orderk. For results in this table, transition probabilities were drawn
uniformly from (0.4, 0.6) ⊂ R.

to 1000. Based on the numbers given in Table 2.2, we make the followingestimates:

P (k ≥ 1 | k̂ = 1) ≈ 818 + 116

33 + 818 + 116
= 0.9659 (2.4)

P (k = 0 | k̂ = 0) ≈ 966

966 + 180 + 28
= 0.8228 (2.5)

That is to say, if the BIC order estimator equals one for a givensequence, we find there is a greater

than95% chance that the sequence was generated by a Markov chain ofat leastorder one, i.e., a

95% chance that the sequence was in factnot IID. On the other hand, if the BIC order estimator

equals zero for a given sequence, we find that there is an approximately 80% chance that the

sequence was in fact IID.

In our observations, after converting real time series for stocks intou/d sequences, the max-

imum likelihood estimates of the transition probabilitiesare always between0.4 and0.6. This

motivates us to rerun the above tests. This time, when we randomly generate transition probabili-

ties for ak-th order Markov chain, we draw each probability uniformly from the interval(0.4, 0.6).

Other parameters of the test remain the same. The results aresummarized in Table 2.3. Once

again, in no instance do we find that the estimatek̂ exceeds two; we ran1000 tests for each value

of k, and each row sums to1000. Based on Table 2.3, we make the following estimates:

P (k ≥ 1 | k̂ = 1) ≈ 312 + 182

17 + 312 + 182
= 0.9667 (2.6)

P (k = 0 | k̂ = 0) ≈ 983

983 + 686 + 758
= 0.4050 (2.7)

These results strengthen our conclusion that if the BIC orderestimator applied to a sequence yields

one, there is a greater than95% chance that the sequence was in factnot IID. Note, however, that

drawing the transition probabilities from the interval(0.4, 0.6)—centered at0.5—has made it very
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easy for the BIC order estimator tounderestimatethe true order of the Markov chain. This is

intuitively clear: if the transition probabilities for either a first- or second-order Markov chain are

all close to0.5, then short sequences generated by the Markov chain will appear to be IID. One will

require an extremely long sequence from such a Markov chain in order to distinguish the sequence

from an IID sequence;N = 500 samples is simply not enough.

The meaning of these results is that we can reliably use the BICorder estimator tofalsify

(2.1), but never to verify (2.1). In situations where we apply the BIC order estimator to real

financial time series and obtain an estimate of at least one, there is a high probability that (2.1) is

false; if, on the other hand, we obtain an estimate of zero, weshould discard it.

2.5 Order Estimation: Results

We apply the BIC order estimation technique to stocks listed on the French CAC-40 index. Our

interest in these stocks stems purely from the fact that European-style options on these stocks are

traded on Euronext, and both the classical Black-Scholes model and our MT model are designed

to price European-style options. For each stock on the index, we download at least two years of

adjusted daily closing prices from Yahoo! Finance. Note that there are 252 trading days in one

year, so at least two years’ worth of data gives us a time series of lengthN ≥ 504. We then apply

the methodology of Section 2.4 and produce BIC order estimates for each time series. We find that

there are six French companies for which the BIC order estimate equals one:

• Air Liquide (Euronext: AI), using data from Jan. 1, 2007 to Oct. 2, 2009.

• AXA Group (Euronext: CS, NYSE: AXA), using NYSE data from Feb.1, 2007 to Oct. 2,

2009.

• L’Oréal Group (Euronext: OR), using data from Jan. 1, 2007 to Oct. 2, 2009.

• Pernod Ricard (Euronext: RI), using data from Jan. 1, 2003 to Oct. 2, 2009.

• Sanofi-Aventis (Euronext: SAN, NYSE: SNY), using either Euronext or NYSE data from

June 30, 2007 to June 30, 2009.

• Socíet́e Géńerale (Euronext: GLE), using data from Jan. 1, 2007 to Oct. 2,2009.

We believe that (2.1) is false for stock time series for each of these six companies. Later, when we

compare the results of the Black-Scholes and MT models against market prices for European call

options for these six companies, we will add further evidence to this claim. Note that we could

also test (2.1) by using more traditional time series methods such as ACF and PACF. However,

13



Figure 2.1: Illustration of the first three steps of the Markov tree. An upward edge always bifurcates
into v andw. A downward edge always bifurcates intox andy. In this way, the tree accounts for
the first-order Markov nature of the underlying asset’s log return time series.

since our focus is obtaining a discrete tree model to price options, it seems natural to convert the

original time series into a finite state time series and then test (2.1). In future work, we shall explore

whether there exist time series whose non-IID behavior can be detected correctly by Markov order

estimators andnot by ACF-based methods, and vice versa.

2.6 Markov Tree Model: Theory

We now describe a tree model that accounts for the first-orderMarkov dependence in the log

return time series. We restrict our model to accommodate only first-order Markov dependence

(instead of, say,k-th order Markov dependence) not only to obtain computational tractability but

also to maintain parsimony. Like the binomial tree, our treeis generated by working forward from

valuation day to expiration of the option. LetSn be the stock’s spot price at time stepn. When

n = 0, we use one step of the standard binomial tree

P (S1 = uS0) = q (2.8a)

P (S1 = dS0) = 1− q. (2.8b)

Forn ≥ 1, let us define two events:

S+
n = {Sn ≥ Sn−1} (2.9)

S−
n = {Sn < Sn−1}. (2.10)

14



In words, the eventS+
n is the event that the stock price increased from time stepn− 1 to time step

n. The eventS−
n is the complement ofS+

n , i.e., the event that the stock price decreased from time

stepn− 1 to time stepn. We can now write down our model for the evolution ofSn, for n ≥ 1:

P (Sn+1 = vSn|S+
n ) = q+ (2.11a)

P (Sn+1 = wSn|S+
n ) = 1− q+ (2.11b)

P (Sn+1 = xSn|S−
n ) = q− (2.11c)

P (Sn+1 = ySn|S−
n ) = 1− q−. (2.11d)

Here we have introduced four symbols,v, w, x andy, which represent different factors by which

the stock price at every time step is allowed to change. According to our model, if the stock price

increased from stepn − 1 to stepn, then the stock price at stepn + 1 is vSn with probabilityq+

andwSn with probability1 − q+. If the stock price decreased from stepn − 1 to stepn, then the

stock price at stepn+ 1 is xSn with probabilityq− andySn with probability1− q−.

We remark that we think ofq, q+, andq− as, respectively, risk-neutral versions of the em-

pirical probabilitiesP (u), P (u|u), andP (u|d). We shall explain later how, with respect to these

risk-neutral probabilities, the stock price processSn is in fact a martingale.

The first three steps of the tree are illustrated in Figure 2.1. If we let S0 denote the initial

spot price of the stock, then it is clear thatS3 ∈ J3 where

J3 = {S0uv
2, S0uvw, S0uwx, S0uwy, S0dxv, S0dxw, S0dyx, S0dy

2}.

In general, letJn denote the vector of possible states the stock can be in aftern steps of the Markov

tree. Letδn : Jn → Z
+ be the function that counts the number of paths in the tree that lead from

S0 to a given element ofJn. Forω ∈ Jn, we refer toδn(ω) as theduplication numberof stateω.

We list without proof these facts:

• Jn containsn2 − n+ 2 unique elements.

That is to say, states do recombine. If the stock decreases fromS0uvw, it reaches the same

value as if it increases fromS0uwx—in both cases, it reachesS0uvwx. Because there are two

possible paths leading fromS0 toS0uvwx, we assign the duplication numberδ4(S0uvwx) =

2. Because states recombine, the number of states doesnot increase like2n. In the standard

binomial model, the number of states grows linearly in the depth of the treen. In the MT

model, the number of states grows quadratically in the depthof the treen. This polynomial

growth ensures the tractability of the MT model as a computational method.

• ∑σ∈Jn δn(σ) = 2n.
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One can make sense of this intuitively by recalling that if wedo not count the duplication of

states, then a tree of depthn will contain2n states.

• Let pn denote the polynomial that gives all states inJn together with their duplication num-

bers, i.e.,

pn(u, d, v, w, x, y) =
∑

ω∈Jn
δn(ω)ω.

Thenpn may be computed via

pn = u
[
v w 0 0

]




v w 0 0

0 0 x y

v w 0 0

0 0 x y




n−2

1 + d
[
0 0 x y

]




v w 0 0

0 0 x y

v w 0 0

0 0 x y




n−2

1,

where1 denotes a column vector with each entry equal to one. The above fact may be derived

by writing the adjacency matrix for a directed, weighted graph related to our Markov tree.

For now, we merely mention that once we use the above iterative matrix formula to compute

pn for a givenn and thereby generate a Markov tree of depthn, we can then reuse this tree

many times to price many different options. For different options,S0, u, d, v, w, x, andy

will be different, but the set of statesJn and the duplication numbersδn will always be the

same.

For example, carrying out the tree one step further than shown in Figure 2.1, we find that

J4 = {S0uv
3, S0uv

2w, S0uvwx, S0uvwy, S0uw
2x, S0uwyx, S0uwy

2,

S0dxv
2, S0dxvw, S0dx

2w, S0dxwy, S0dyxv, S0dy
2x, S0dy

3}.

We haveδ4(S0uvwx) = δ4(S0dxwy) = 2 andδ4(σ) = 1 for all other possible statesσ ∈ J4. Note

that, as per our formula, there are42 − 4 + 2 = 14 elements inJ4, and
∑

σ∈J4 δ4(σ) = 16 = 24.

Next, note that it is simple to calculate the probability that the stock’s price path reaches

a given state inJn, starting atS0. Let σ = S0u
md1−mvawbxcyd denote an arbitrary state inJn.

(Clearly eitherm = 0 or m = 1, and also the sum of the exponents must equaln, i.e., 1 + a +

b + c + d = n.). Then, by the definitions made in (2.8) and (2.11), the probability of reachingσ

starting atS0 is simply equal to

P (σ) = δn(σ)q
m(1− q)1−m ×

(
q+
)a (

1− q+
)b (

q−
)c (

1− q−
)d
. (2.12)

Let us now explain how we use the tree to price a European call option. LetK denote the
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strike price and letS∗ denote the spot price at the time of expiry. The payoff of the option is denoted

by (S∗−K)+, which equals zero unlessS∗−K > 0, in which case it equalsS∗−K. LetT denote

the time until expiry. We fix the total number of stepsN in the tree and set∆t = T/N . With these

definitions, we can see thatS∗ is a random variable that can take on any of the statesσ ∈ JN with

probabilities given by (2.12). We have enough information to write down the expected value of the

option’s payoff at the time of expiry:

E[(S∗ −K)+] =
∑

σ∈JN
Iσ>K(σ −K)P (σ). (2.13)

HereIσ>K is an indicator variable that equals one whenσ > K and zero whenσ ≤ K. Now let

r equal the risk-free interest rate. Then we define the MT model’s call option price to be expected

payoff at the time of expiry, discounted to the present time:

C = e−rTE[(S∗ −K)+]. (2.14)

Note that using precisely the same approach, we can price European put options without

making use of put-call parity. The payoff of a European put option equals(K − S∗)+. The MT

model’s put option price is, once again, the discounted expected payoff:

U = e−rTE[(K − S∗)+]. (2.15)

2.6.1 No Arbitrage.

Let us show that our model does not admit arbitrage. We define

q =
exp(r∆t)− d

u− d

q+ =
exp(r∆t)− w

v − w
, q− =

exp(r∆t)− y

x− y
.

One may easily verify that with these three risk-neutral probabilities,

E[S1|S0] = uS0q + dS0(1− q) = er∆tS0,
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and forn ≥ 1,

E[Sn+1|Sn, . . . , S0] = E[Sn+1|Sn, . . . , S0, S
+
n ]P (S

+
n ) + E[Sn+1|Sn, . . . , S0, S

−
n ]P (S

−
n )

=
[
vSnq

+ + wSn(1− q+)
]
P (S+

n ) +
[
xSnq

− + ySn(1− q−)
]
P (S−

n )

= er∆tSnP (S
+
n ) + er∆tSnP (S

−
n )

= er∆tSn.

This is enough to imply that the discounted stock processS̃n = e−rn∆tSn is a martingale under the

risk-neutral probabilities given byq, q+, andq−. Then, by the first fundamental theorem of asset

pricing (see (Shreve, 2004, Chapter 2.4)), there is no arbitrage in the MT model.

2.6.2 Implementation Notes.

The parametersu, d, v, w, x, andy are estimated as follows. For each date on which we wish to

value an option, we start with the time series of one prior year’s worth of adjusted closing daily

returns for the stock. We scan through this time series and form two disjoint time series: each time

a given day’s return exceeds or equals the previous day’s, weadd that return to series1; each time

a given day’s return is less than the previous day’s, we add that return to series2. We then take the

logarithm of all returns in series1 and2 and also in the original time series. Letσ̂+ andl+ denote

the standard deviation and length of log return series1, and letσ̂− and l− denote the standard

deviation and length of log return series2. Let σ̂ be the standard deviation of the entire log return

series. The standard deviations are then converted to volatilities σ, σ+ andσ− usingσ =
√
252σ̂

andσ± =
√
l±σ̂±. With these volatilities, we set

u = exp
(
σ
√
∆t
)
,

v = exp
(
σ+

√
∆t
)
, x = exp

(
σ−

√
∆t
)
,

where∆t is the duration of each time step in the model. We then setd = 1/u, w = 1/v, and

y = 1/x.

2.7 Tree Model: Results

For 44 trading days from July 17, 2009 to September 17, 2009, we tracked the end-of-day market

prices for European-style call options for the six companies listed in Section 2.5. Data was obtained

from euronext.com. We emphasize that all of the tests we are about to describe are out-of-sample

tests; at no time did we use past or present market prices of options as inputs to the MT or Black-
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Scholes models. The fact that the MT model requires no calibration with options price data from

real markets is in marked contrast to, say, Rubinstein’s implied binomial tree model (Rubinstein,

2012).

On dayi of the study, we used stock and futures prices from days before or on dayi to

estimate parameters that are fed as inputs to the MT and Black-Scholes options pricing models.

Specifically, we estimated the risk-free rater and the volatilitiesσ, σ+, andσ−, which determine

the jumpsu, d, v, w, x, andy. With these parameters, we priced all exchange-traded options using

both the MT and Black-Scholes models. For the MT model, we usedN = 501 steps. For each

option at hand, we compared the outputs of these options pricing models on dayi to the market

price of the same option on dayi.

2.7.1 Comparison of Model and Market Prices.

We first consider the day-by-day performance of the MT model versus the Black-Scholes model,

averaged across all strikes. Leti be a fixed day. Letbi,mi, andMi be the vectors containing Black-

Scholes, MT, and market prices on dayi for options of different strikes (but the same expiration

date). On each day, we compute

ǫbi =
‖bi −Mi‖2

‖Mi‖2
, ǫmi =

‖mi −Mi‖2
‖Mi‖2

. (2.16)

In each of the six panels of Figure 2.2, we plot the relative error curvesǫbi (in red) andǫmi (in blue)

versus dayi for options from each of the six companies listed in Section 2.5, respectively.

We then consider the strike-by-strike performance of the MTmodel versus the Black-Scholes

model, averaged across all days. Letj be a fixed strike price. Letbj, mj, andMj be the vectors

containing Black-Scholes, MT, and market prices for optionswith strike j on different days (but

the same expiration date). On each day, we compute

γbj =
‖bj −Mj‖2

‖Mj‖2
, γmj =

‖mj −Mj‖2
‖Mj‖2

. (2.17)

In each of the six panels of Figure 2.3, we plot the log relative error curveslog(γbj) (in red) and

log(γmj ) (in blue) versus strike pricej for options from each of the six companies listed in Section

2.5, respectively.

In both Figure 2.2 and Figure 2.3, the following symbols are used to denote common expira-

tion dates: “◦” means September 2009, “∗” means March 2010, “⋄” means September 2010, and

“+” means March 2011.

Comparing Black-Scholes and MT relative errors for options with thesameexpiration date
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means comparing blue and red curves withidentical symbols in Figure 2.2 and Figure 2.3. For

example, in Figure 2.2, comparing blue and red curves with “+” symbols shows that the MT

model’s prices for options expiring in March 2011 are much closer to market prices than the Black-

Scholes model’s prices for options expiring in March 2011. This is true for all six companies.

In fact, comparing blue and red curves in Figure 2.2 with identical symbols reveals that the

only expiration date for which the two models produce comparable results is the September 2009

expiration date, denoted by “◦.” In this case, for all six companies, the MT model still produces

relative errorsǫmi that are two to ten times smaller than the relative errorsǫbi produced by the Black-

Scholes model. For all other expiration dates, comparing the two models on a day-by-day basis,

the MT model’s call option prices are far closer to market prices than the Black-Scholes model’s

prices.

Moving to Figure 2.3, we see that as the strike price increases, the Black-Scholes model’s

error increases more rapidly than the MT model’s error. Notethat each point on each of the panels

in Figure 2.3 is an aggregate result, averaged (in the sense of the 2-norm) over 44 trading days’

worth of data. For this reason, we believe Figure 2.3 provides strong evidence that the discrepancy

between Black-Scholes and market prices for out-of-the-money options is not entirely due to the

dependence of volatility on strike price and time until expiration.

2.7.2 Comparison of Volatilities.

For each of the six stocks listed in Section 2.5, we plot in Figure 2.4 the three volatilitiesσ, σ+,

andσ− on each of the 44 days. These plots show that for three of the six stocks (AI, OR, and

GLE before day 40), the difference betweenσ+ andσ− is small, on the order of1%. For these

three stocks, the MT model, in the way we have implemented it with the formulas from Section

4.3, produces option prices close to those produced by a binomial model with with volatility given

by eitherσ+, σ−, or perhaps a weighted average of these values. It is noteworthy that a binomial

model withvolatility estimated by splitting past historical data based on whether returns were

increasing or decreasing relative to the previous daydoes far better at tracking market prices than

a vanilla Black-Scholes (or, equivalently, binomial) modelwith volatility σ. The formulas given in

Section 4.3 forσ± were determined by extensive trial-and-error. In future work, we shall provide

a more rigorous theory for estimating the parametersv, w, x, andy that serve as inputs to the MT

model.

On the other hand, the plots in Figure 2.4 also indicate that for three of the six stocks (CS,

RI, and SAN), the difference betweenσ+ andσ− is closer to10%. In this case, one can show

that the set of statesJ501 together with (2.12) yield a probability distribution on the set of stock

prices at the time of expiry that is different from the distribution of final stock prices provided by
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a standard binomial model. For these three stocks, the MT model does not reduce to a binomial

model. Depending on the specific values of the parameters, itis possible for the MT model’s

final stock price distribution to feature heavier tails and interesting asymmetries relative to the

lognormal distribution. We expect that these features, which have been reported elsewhere in the

financial time series literature, will appear when we use better methods for estimatingσ±.

2.8 Conclusion

Over the past two years, many securities have been subject tolarge fluctations in price, and financial

modeling assumptions that used to be considered standard should now be called into question. One

such assumption is (2.1). In this Chapter, we have tested (2.1) using the BIC order estimation

method. The tests have revealed six stocks in the French CAC-40index whose log return time

series is not IID. For these six stocks, and for other stocks whose log return time series is best

modeled by ak-th order Markov chain withk ≥ 1, we propose the MT options pricing model.

The number of states in the Markov tree grows quadratically in the depth of the tree, giving the

model computational tractability. Implementing the MT model, we find strong agreement between

the MT model’s prices and market prices.

In future work, we shall compare the MT model against more sophisticated options pric-

ing models, such as those incorporating stochastic volatility. The first-order Markov dependence

of our tree model is a general concept that could be incorporated into discrete-time stochastic

volatility models (Florescu and Viens, 2008), which could further reduce the error between model

and market prices. Finally, we shall extend the MT model to price weather derivatives, espe-

cially in light of scientific studies that propose Markov chain models for quantities such as rainfall

(Gabriel and Neumann, 1962).
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Figure 2.2: From left to right, top to bottom, we plot model relative errors for the six companies
listed in Section 2.5 in the following order (alphabetical in the Euronext symbols): AI, CS, GLE,
OR, RI, and SAN. Each panel displays relative errorsǫbi (Black-Scholes error in red) andǫmi (MT
error in blue) versus dayi for options with different expiration dates. The followingsymbols are
used to denote common expiration dates: “◦” means September 2009, “∗” means March 2010, “⋄”
means September 2010, and “+” means March 2011.Note that for all expiration dates except
September 2009, the MT model’s relative error curves are farbelow the Black-Scholes relative
error curves.For options expiring in September 2009, both models yield nearly identical results.
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Figure 2.3: From left to right, top to bottom, we plot model relative errors for the six companies
listed in Section 2.5 in the following order (alphabetical in the Euronext symbols): AI, CS, GLE,
OR, RI, and SAN. Each panel displays log relative errorslog(γbj) (Black-Scholes error in red) and
log(γmj ) (MT error in blue) versus strike pricej for options with different expiration dates. The
following symbols are used to denote common expiration dates: “◦” means September 2009, “∗”
means March 2010, “⋄” means September 2010, and “+” means March 2011.Note that for all
expiration dates, as the strike price increases, the Black-Scholes model’s relative error curves far
exceed the MT model’s relative error curves.
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Figure 2.4: From left to right, top to bottom, we plot the volatilities for six companies listed in
Section 2.5 in the following order (alphabetical in the Euronext symbols): AI, CS, GLE, OR, RI,
and SAN. Each panel displays the volatiliesσ, σ+ andσ− in blue, green and red respectively versus
day i. These valuesσ, σ+, andσ− are used to calculate the jump factorsu, v andx, respectively.
Recall that the jump factorsd, w, andy are the reciprocals ofu, v, andx, respectively.Note that
in the MT model, volatility is assumed to be independent of the strike price and the expiration date
of the option.
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Chapter 3

Markov Tree: Continuous Model

3.1 Introduction

The Black-Scholes model for European call options assumes that the underlying asset follows a ge-
ometric Brownian motion: ifSt is the price of the underlying at timet, thendSt = µStdt+σStdWt,
whereµ andσ are constants andWt is a Brownian motion. It follows that the Black-Scholes model
assumes normality of daily log returns and independence of increments. The purpose of this Chap-
ter is the detailed examination, both theoretical and empirical, of a model in which both assump-
tions are removed. This model was introduced as the Markov tree (MT) model in our earlier work
(Bhat and Kumar, 2010). The name of the model indicates that the tree is a generalization of the
standard binomial tree, where the up/down factors at stepn+1 depend on the direction of the step
taken at stepn. This is illustrated in Fig. 3.1. Though the description of the model is simple, and
though it contains only two additional static parameters (σ+ andσ−) that must be estimated from
data, the MT model leads to a number of non-trivial properties with significant consequences for
option pricing.

By construction, the MT model accounts for the serial dependence of log returns. As we
show, the distribution generated by the MT model is very closely approximated by a mixture of
normals. Though this topic is not pursued further here, the MT model is a tree model that could
be used to price path-dependent options. Hence the MT model can be seen as combining the
strengths of normal mixture models, non-IID models, and tree methods all within the framework
of risk-neutral pricing. In this Chapter, we derive an accurate, computationally efficient, closed-
form approximation to the MT model option price. We go on to subject our model to out-of-sample
comparisons against market prices and Black-Scholes model prices.

The MT model incorporates several features that have been studied separately in the liter-
ature. The first such feature is the use of a mixture of normals. It is widely accepted that the
observed distribution of daily log returns for stocks has heavier tails than the normal distribution,
skewness, and positive excess kurtosis (Cont, 2001; Campbellet al., 1997; Barone-Adesi, 1985;
Longin, 2005; Behr and P̈otter, 2009). Many distributions have been proposed to match these
properties. These distributions can be classified into parametric and non-parametric models—
for an extensive list, see (Jackwerth, 1999). Parametric models include generalized distributions
(Eberlein and Keller, 1995) and mixture distributions (Kon, 1984). Empirical tests (Behr and Pötter,
2009) conclude that normal mixture models fit observed log returns better than other generalized

25



parametric models. In recent work, mixture distributions have been used in both option pricing and
portfolio optimization (Tan and Chu, 2012; Cai and Kou, 2011; Ramponi, 2011; Buckley et al.,
2008; Brigo and Mercurio, 2002; Ritchey, 1990) with success.

The second feature of the MT model is the non-IID process usedto model the underlying
asset dynamics. The study of (Niederhoffer and Osborne, 1966) was one of the first to examine
serial dependence of log returns, providing strong evidence of dependence in tick differences.
Daily returns have been studied by many authors, e.g., (Fielitz and Bhargava, 1973; Fielitz, 1975;
Ding et al., 1993; Taylor, 2007), providing considerable evidence that daily returns are not inde-
pendent. For returns sampled at longer intervals, i.e., monthly or yearly, the evidence is incon-
clusive (Sewell, 2011). Note that the short-term dependence of log returns need not invalidate the
weak form of the efficient market hypothesis (Fama, 1970).

Several option pricing models have been proposed that allowfor serial dependence of the
underlying asset’s returns. A direct approach is to explicitly account for dependence on the past in
the underlying asset model. This strategy has been pursued with Markov and semi-Markov pro-
cesses (Janssen et al., 1997; D’Amico et al., 2009), jump-diffusion processes with non-IID jumps
(Camara and Li, 2008), and stochastic delay differential equations (SDDEs) (Chang et al., 2011,
2010; Swords and Appleby, 2010; Wu M. et al., 2008; Chang and Youree, 2007; Kazmerchuk et al.,
2007; Arriojas et al., 2007; Appleby et al., 2012a,b). In thecase of SDDE models, obtaining a
closed-form approximation for the option price is much moredifficult than for the MT model. Fur-
thermore, when SDDE models are proposed in the literature, the performance of the models has
not been tested using market data.

Another approach that yields a non-IID model is to introducethe concept of a regime; in a
regime-switching model, a stochastic process (typically,a Markov chain) drives the regime from
one state to another, and model parameters such as volatility and the risk-free rate are functions
of the regime state (Mamon and Rodrigo, 2005; Aingworth et al., 2006; Basu and Ghosh, 2009).
Finally, we note that in the framework of stochastic and/or GARCH volatility (Heston, 1993;
Heston and Nandi, 2000) models, non-IID returns are a side effect of a volatility process that al-
lows for memory.

The general outline of this Chapter is as follows. In Section 3.2, we prove that the tree is
recombinant and give an exact formula for the option price. The exact formula relies on a discrete
p.m.f. (probability mass function) that becomes prohibitively difficult to compute as the size of
the time step vanishes. Therefore, in Section 3.3, we approximate the p.m.f. by a continuous p.d.f.
(probability density function), which turns out to be a mixture of normal distributions. In Section
3.4, we use the approximate continuous p.d.f. to derive a closed-form option price. In Section 3.5,
we conduct out-of-sample empirical tests that show that theMT model’s prices are very close to
market prices. In the same section, we give our conclusions and directions for further research.

3.2 Markov Tree Generation and Computational Tractability

Here we establish that the maximum number of possible statesin a Markov tree of depthn is
n2 − n+ 2. We also give a method for computing the p.m.f. ofSn, the underlying asset price after
n steps of the tree.
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Figure 3.1: Tree of depthn = 6 showing recombination of paths of the underlying asset in the
MT model. The asset begins with priceS0 and is multiplied by the weights along the path. For
example, a possible path of length3 shown here isS0uwx. Both the probabilities and the outcomes
of Sn+1/Sn depend on whetherSn/Sn−1 was an upward or downward movement. In this way, the
tree accounts for first-order Markov dependence of log returns. At depthn, there aren2 − n + 2
possible states, as shown in Section 3.2.2.

3.2.1 Persistent random walk

The time evolution of̃Sn = log Sn under the Markov tree is equivalent to a persistent random walk
on the real line, where both the size and direction of the walker’s step at time stepn + 1 depends
on the direction of the step taken at time stepn:

S̃n+1(ω) = S̃n(ω) +G(H(S̃n − S̃n−1), ω), (3.1)

whereH is the Heaviside function

H(x) =

{
1 x > 0

0 x < 0,

andG(1, ω),G(0, ω) are random variables with p.m.f.’s

P (G(1, ω) = log v) = q+, P (G(1, ω) = logw) = 1− q+, and

P (G(0, ω) = log x) = q−, P (G(0, ω) = log y) = 1− q−
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for n ≥ 2. Forn = 1, the p.m.f. ofG(1, ω) andG(0, ω) is given by

P (G(1, ω) = log u) = q

P (G(1, ω) = log d) = 1− q.

We assumelog u, log d, log v, logw, log x, log y are all non-zero, so thatP (S̃n = S̃n−1) = 0.

3.2.2 Number of states in a tree of fixed depth

For the moment, we ignore the size of the walker’s steps and focus only on their direction. If the
walker moves to the right (respectively, left), we call thatheadsH (respectively, tailsT ). The walk
aftern steps can be regarded as a random sequence of headsH and tailsT .

Let nH (respectively,nT ) be1 if the first element isH (respectively,T ) and0 otherwise. Let
nHH , nHT , nTH , andnTT denote the number of subsequences of the formHH,HT , TH, andTT .
Then

nHH + nHT + nTH + nTT = n− 1. (3.2)

Let v = (nH , nT , nHH , nHT , nTH , nTT ). The final position of the walker is̃Sn = S̃0 + s · v
wheres = (log u, log d, log v, logw, log x, log y). Hence enumerating all possible vectorsv is
equivalent to enumerating all possible outcomes ofS̃n.

Suppose that the sequence starts withH. Let t denote the number oftransitions:

t = nHT + nTH . (3.3)

Now t can be anything from0 to n − 1. Givent, we knownHT andnTH , since transitions must
alternateH to T andT toH. For t = 0, there is only one sequenceHHH · · ·H.

For t = 1, 2, . . . , n − 1, a walk with t transitions is a sequence oft + 1 blocks, with odd
blocks consisting of consecutiveH ’s and even blocks consisting of consecutiveT ’s. We start with
the sequenceHTHTHT · · · of length t + 1. To convert this into a walk of lengthn, we must
insert extraH ’s into theH blocks and extraT ’s into theT blocks, insertingn− t− 1 elements in
total. NownHH is the number ofH ’s inserted, so it can be anything from0 to n− t− 1, for n− t
possibilities in total. Once we knownHH , we solve fornTT using (3.2).

For a walk of lengthn starting withH, the number of possiblev’s is 1 +
n−1∑

t=1

(n − t) =

1 +
n(n− 1)

2
. Twice this number isn2 − n + 2, the total number of possibilities forv. Note that

the regime-switching model of (Aingworth et al., 2006), if used with two volatility states, results
in a different tree that also has quadratic complexity.

3.2.3 Markov tree probability mass function

Now let us assumev is given and count how many walks correspond to that samev. Starting with
H, there area = nTH + 1 blocks of heads andb = nHT blocks of tails.

GivennHH andnTT , to obtain the walk we must decide how many of thenHH extra heads
to insert into each block, with the total beingnHH . The number of such possibilities is the number
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of weak compositions ofnHH into a nonnegative integers,
(
nHH+a−1

a−1

)
.

We must also decide how many of thenTT extra tails to insert into each block, with the
total beingnTT . The number of such possibilities is the number of weak compositions ofnTT in b
nonnegative integers,

(
nTT+b−1

b−1

)
.

Hence the number of walks that start withH and correspond tov is

#(v) =

(
nHH + a− 1

a− 1

)(
nTT + b− 1

b− 1

)
=

(
nHH + nTH

nTH

)(
nTT + nHT − 1

nHT − 1

)
. (3.4)

If instead the walk starts withT , the only difference is thata = nTH andb = nHT + 1 and we
obtain

#(v) =

(
nHH + a− 1

a− 1

)(
nTT + b− 1

b− 1

)
=

(
nHH + nTH − 1

nTH − 1

)(
nTT + nHT

nHT

)
(3.5)

as the number of walks.
Once we know how many ways there are of reachingS̃n from S̃0, we can compute

P (S̃n = S̃0 + s · v) = #(v)qv, (3.6)

whereq = (q, 1− q, q+, 1− q+, q−, 1− q−) andqv =
∏6

j=1 qj
vj . In this way, the entire p.m.f. of

S̃n is determined.
Care must be used when applying the above formulas, as they do not detect whether the

walk is allowed or not. If the walk corresponding tov is allowed, then the above formulas give the
number of walks.

This begs the question of enumerating all allowedv’s at a fixed depthn. This can be
done using the following algorithm, which works for all walks that start withH (so thatnH =
1):

print v = (1, 0, n− 1, 0, 0, 0)
for t = 1 → n− 1 do
nHT = ⌈t/2⌉
nTH = ⌊t/2⌋
for nHH = 0 → n− t− 1 do
nTT = (n− t− 1)− nHH

print v = (1, nHH , nHT , nTH , nTT )
end for

end for
To enumerate all walks that start withT (so thatnT = 1), we use the same algorithm as above with
two minor changes: (i) switch the definitions ofnHT andnTH ; (ii) change thet = 0 output ofv to
bev = (0, 1, 0, 0, 0, n − 1). Using both algorithms, we produce a list of all allowedv’s at a fixed
depthn.
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3.3 Continuous Approximation of the Markov Tree

We can see from (2.13) that the key ingredient in computing the Markov tree options price is
taking the expected value of the payoff function with respect to the p.m.f. (3.6) generated by
the tree. Though we have developed an efficient algorithm to generate all states of the tree, the
quantity#(v) defined by (3.4) and (3.5) is difficult to compute in finite-precision arithmetic due
to the large binomial coefficients involved. In this section, we develop a closed-form continuous
p.d.f. that closely approximates the discrete Markov tree p.m.f.

The p.d.f., which turns out to be a mixture of normals, also yields an intuitive understanding
of the distribution of asset prices generated by the Markov tree. This understanding will lead us to
a reasonable method to statistically estimate the parametersu, v, andx from market data.

3.3.1 Recursion

To develop a continuous approximation, we first rewrite the discrete-time process (3.1) as a recur-
sion. We assume all movements are symmetric about one (i.e.,d = 1/u, w = 1/v, y = 1/x) and
define

lu = log u = − log d (3.7a)

l1 = log v = − logw (3.7b)

l2 = log x = − log y (3.7c)

We assumelu, l1, andl2 are all positive.
LetR(n, s̃) be the probability of reaching a valuẽs on the real line inn steps by moving to

the right (in the positive direction onR) in then-th step. Similarly, letL(n, s̃) be the probability
of reaching the valuẽs in n steps by moving to theleft (in the negative direction onR) in then-th
step.

In the Markov tree, sincelog v andlog x are the only positive steps allowed,R(n, s̃) is the
probability of reaching̃s in n steps by taking either alog v step or alog x step in then-th step. If
then-th step was alog v step, then aftern− 1 steps, the walker was ats̃− l1 and had reached there
by taking the(n − 1)-th step to the right. The probability of the walker reachingthis position in
this way aftern− 1 steps isR(n− 1, s̃− l1). Similarly, if then-th step was alog x step, then after
n− 1 steps, the walker was ats̃− l2 and had reached there by taking the(n− 1)-th step to the left.
The probability of the walker reaching this position in thisway aftern−1 steps isL(n−1, s̃− l2).

Putting things together, we obtain

R(n, s̃) = q+R(n− 1, s̃− l1) + q−L(n− 1, s̃− l2). (3.8)

Next, sincelogw and log y are the only negative steps in the Markov tree,L(n, s̃) is the
probability of reaching̃s in n steps by taking alogw step or alog y step in then-th step. If the
n-th step was alogw step, then the walker was ats̃ + l1 aftern − 1 steps and had reached there
by taking the(n − 1)-th step to the right. The probability of the walker reachingthis position in
this way aftern − 1 steps isR(n − 1, s̃ + l1). Similarly, if then-th step was alog y step, then
the random walker was at̃s + l2 aftern − 1 steps and had reached there by taking the(n − 1)-th
step to the left. The probability of the walker reaching thisposition in this way aftern− 1 steps is
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L(n− 1, s̃+ l2).
Putting things together, we obtain

L(n, s̃) = (1− q+)R(n− 1, s̃+ l1) + (1− q−)L(n− 1, s̃+ l2). (3.9)

3.3.2 Exact solution in Fourier space

We introduce the following forward and inverse Fourier transform pair, with the variablek as the
Fourier conjugate variable tõs:

f̂(k) =

∫

R

f(s̃)e−iks̃ ds̃, f(s̃) =
1

2π

∫

R

f̂(k)eiks̃ dk. (3.10)

Define

M =

[
q+e−ikl1 q−e−ikl2

(1− q+)eikl1 (1− q−)eikl2

]
. (3.11)

Then, taking the Fourier transforms of both sides of (3.8) and (3.9), we are able to put the system
into matrix-vector form and solve:

[
R̂(n, k)

L̂(n, k)

]
=M

[
R̂(n− 1, k)

L̂(n− 1, k)

]
=Mn−1

[
R̂(1, k)

L̂(1, k)

]
. (3.12)

LetP (n, s̃) = R(n, s̃)+L(n, s̃). ThenP (n, s̃) is the p.d.f. of the random variablẽSn. The Fourier
transform of the p.d.f. is given bŷP (n, k) = R̂(n, k) + L̂(n, k). We computeP̂ (n, k) by left
multiplying equation (3.12) with the row vector1t:

P̂ (n, k) = 1tMn−1

[
R̂(1, k)

L̂(1, k)

]
. (3.13)

SinceM is diagonalizable, raising it to then-th power is computationally economical and we can

easily computeP̂ (n, k). By construction of the Markov tree,R(1, s̃) = qδ
(
s̃− (S̃0 + lu)

)
and

L(1, s̃) = (1− q)δ
(
s̃− (S̃0 − lu)

)
, whereδ is a point mass (Dirac delta).

3.3.3 Numerical solution in real space

In the numerical inversion of (3.13), the only difficulty that might possibly arise would be that the
spectrum ofM lies too close to the unit circle inC. For this reason, we numerically explore the
spectrum ofM in Fig. 3.2. Letm1 andm2 be the eigenvalues ofM . We plot the moduli|m1|
and |m2| as functions ofk for two different sets of parameters. The two plots shown there are
representative; the spectrum ofM is well-behaved.

To invert the Fourier transform (3.13) and obtain the p.d.f.of S̃n, we use the algorithm
described by (Inverarity, 2003). This approach to finding the p.d.f. is faster and more accurate
than Taylor expanding the right hand side of equations (3.8)and (3.9) aboutl1 and l2 and then
numerically solving the partial differential equation thus obtained.

Note that even though numerical Fourier inversion of (3.13)yields a fast, accurate approx-
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Figure 3.2: Moduli of the eigenvaluesm1, m2 of the matrixM defined in (3.11). We plot|mj| as
a function of Fourier variablek to show that, for almost all values ofk, the eigenvalues are in the
interior of the unit disc inC. For the plot on the left, we setl1 = l2 = 1, q+ = 3/5, q− = 1/2. For
the plot on the right, we setl1 = 5/4, l2 = 1, q+ = 1/5, q− = 7/10. We obtain similar behavior
for many other parameter choices.

imation to the p.d.f. of̃Sn, the method has two deficiencies that prevent us from using itto price
options: (i) it does not yield an analytical expression for the p.d.f., and (ii) it does not provide any
intuition on how to statistically estimate the parametersu, v, andx. We will therefore use the p.d.f.
obtained by numerical inversion of (3.13) only to compare against the true Markov tree p.m.f. (3.6)
and the asymptotic approximation that we derive next.

3.3.4 Asymptotic solution in real space

We now derive an asymptotic approximation to the p.d.f. (Rudnick and Gaspari, 2004, Chap. 5.2)
that uses generating functions. Forz ∈ C, we define

ρ(z, k) =
∞∑

n=0

R̂(n+ 1, k)zn

λ(z, k) =
∞∑

n=0

L̂(n+ 1, k)zn.

The functionsρ andλ are generating functions forR andL, respectively. Using (3.12), we can
write

[
ρ(z, k)
λ(z, k)

]
=

∞∑

n=0

Mnzn
[
R̂(1, k)

L̂(1, k)

]

= (I−Mz)−1

[
R̂(1, k)

L̂(1, k)

]

=
1

(1− zm1)(1− zm2)

[
1− (1− q−)eikl2z q−e−ikl2z
(1− q+)eikl1z 1− q+e−ikl1z

] [
R̂(1, k)

L̂(1, k)

]
. (3.14)
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Let p be the generating function for̂P . Then

p(z, k) =
∞∑

n=0

P̂ (n+ 1, k)zn

=
∞∑

n=0

(
R̂(n+ 1, k) + L̂(n+ 1, k)

)
zn

= 1t

[
ρ(z, k)
λ(z, k)

]
. (3.15)

Substituting (3.14) in (3.15) and carrying out the algebra,we have

p(z, k) =
P̂ (1, k)

(1− zm1)(1− zm2)
+ z

γ

(1− zm1)(1− zm2)
,

where

γ = R̂(1, k)
(
(1− q+)eil1k − (1− q−)eil2k

)
+ L̂(1, k)

(
q−e−il2k − q+e−il1k

)
,

independent ofz. Continuing with the calculation, we getp(z, k)

=
P̂ (1, k)

(1− zm1)(1− zm2)
+ z

γ

(1− zm1)(1− zm2)

=
P̂ (1, k)

m1 −m2

(
m1

1− zm1

− m2

1− zm2

)
+ z

γ

m1 −m2

(
m1

1− zm1

− m2

1− zm2

)

=
P̂ (1, k)

m1 −m2

(
m1

∞∑

n=0

mn
1z

n −m2

∞∑

n=0

mn
2z

n

)
+ z

γ

m1 −m2

(
m1

∞∑

n=0

mn
1z

n −m2

∞∑

n=0

mn
2z

n

)

=
1

m1 −m2

∞∑

n=0

(
P̂ (1, k)(mn+1

1 −mn+1
2 ) + γ(mn

1 −mn
2 )
)
zn. (3.16)

By definition,P̂ (n+1, k) is given by the coefficient ofzn in the expansion ofp(z, k). The quantities
m1,m2 andP̂ (1, k) are all independent ofz. ThusP̂ (n+1, k) can simply be read off from (3.16):

P̂ (n+ 1, k) =
1

m1 −m2

(
P̂ (1, k)(mn+1

1 −mn+1
2 ) + γ(mn

1 −mn
2 )
)
. (3.17)

The above quantity represents the Fourier transform of the probability of reaching the valuẽs in n
steps and matches the right-hand side of (3.13).

Sincem1,m2, andγ all depend onk, we cannot expect to find a closed-form inverse Fourier
transform of (3.17). However, the tail behavior ofP (n + 1, s̃) asn → ∞ and s̃ → ∞ can be
determined to a close approximation. To do this, we expandP̂ (n+1, k) aboutk = 0 and calculate
the inverse Fourier transform of the leading terms. The leading terms represent the behavior in
the tail where the higher spatial derivatives ofP (n+ 1, s̃) are nearly zero. For justification of this
procedure, we refer to (Lighthill, 1958).
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Letm1 (respectively,m2) be the eigenvalue ofM with larger (respectively, smaller) modulus.
We expand these eigenvalues in powers ofk:

m1 = 1 + iζ11k − ζ12k
2 +O(k3) (3.18)

m2 = (q+ − q−) + iζ21k − ζ22k
2 +O(k3) (3.19)

The expressions for theζlm coefficients are lengthy and shall be omitted. The first step of the
Markov tree gives

P̂ (1, k) = R̂(1, k) + L̂(1.k)

= qe−i(S̃0+lu)k + (1− q)e−i(S̃0−lu)k.

Define the constants

F1 = e−i(S̃0+lu)k, F2 = e−i(S̃0−lu)k,

α = (1− q+)eil1k − (1− q−)eil2k, β = q−e−il2k − q+e−il1k.

We expressγ = qF1α + (1 − q)F2β and P̂ (1, k) = qF1 + (1 − q)F2. Since|m1| > |m2| and
|m1,2| ≤ 1, whenn is large, we get

P̂ (n+ 1, k) ∼ 1

m1 −m2

(
P̂ (1, k)mn+1

1 + γmn
1

)

=
1

m1 −m2

(
qF1(m

n+1
1 + αmn

1 ) + (1− q)F2(m
n+1
1 + βmn

1 )
)

∼ mn−1
1 (qF1(m1 + α) + (1− q)F2(m1 + β)) . (3.20)

Let us concentrate on the first term and approximate it toO(k3). We get

mn−1
1 qF1(m1 + α) = exp (log q + log(F1m1 + F1α) + (n− 1) logm1)

= q exp (log(F1m1 + F1α) + (n− 1) logm1) (3.21)

∼ q exp

(
−µ1ik −

σ2
1

2
k2
)
. (3.22)

To pass from (3.21) to (3.22), we expand the argument of the exponential function in powers ofk.
Note thatF1, m1, andα are all functions ofk defined above. The real coefficientsµ1 andσ1 are
defined in detail in the Appendix B.1. Proceeding analogouslyfor the second term in (3.20), we
get

mn−1
1 (1− q)F2(m1 + β) ∼ (1− q) exp

(
−µ2ik −

σ2
2

2
k2
)
,

whereµ2 andσ2 are real constants defined in the Appendix B.1. We now expressP̂ (n, k) as

P̂ (n+ 1, k) ∼ q exp

(
−µ1ik −

σ2
1

2
k2
)
+ (1− q) exp

(
−µ2ik −

σ2
2

2
k2
)
. (3.23)
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Taking the inverse Fourier transform of both sides of (3.23), we obtain the approximate p.d.f.

P (n+1, s̃) ∼ fs̃(s̃, n+1) :=
q√
2πσ2

1

exp

(
−(s̃− µ1)

2

2σ2
1

)
+

1− q√
2πσ2

2

exp

(
−(s̃− µ2)

2

2σ2
2

)
. (3.24)

This shows that the p.d.f. of̃Sn+1 is well-approximated by a weighted mixture of two normals.
The first normalN (µ1, σ

2
1) has weightq and the second normalN (µ2, σ

2
2) has weight1 − q. Let

the p.d.f. of the first (respectively, second) normal beg1 (respectively,g2), so that we can write

fs̃(s̃, n+ 1) = qg1(s̃, n+ 1) + (1− q)g2(s̃, n+ 1). (3.25)

3.3.5 Comparison of the distribution functions for the Markov tree

We now have two continuous densities to compare against the Markov tree p.m.f. To enable a fair
comparison between discrete and continuous random variables, we compare cumulative distribu-
tion functions (c.d.f.’s). In Fig. 3.3, we plot the c.d.f.’sobtained from the following probability
mass/density functions: MT, the exact Markov tree p.m.f. (3.6), FT, the p.d.f. obtained by numer-
ical inversion of the Fourier transform (3.13), and Asym, the p.d.f. (3.24) obtained by asymptotic
approximation. Table 3.1 shows the parameters used in the comparison in each of the panels.

We see that the FT and Asym c.d.f’s closely approximate the exact MT c.d.f. There is
nothing special about the parameter values chosen for the tests whose results are shown—for other
parameter values, the approximations are just as good.

Table 3.1 also shows the error in the‖ · ‖∞ norm for the FT and Asym approximations.
The FT approximation is better than the Asym approximation;however, the deficiencies of the FT
approximation noted at the end of Section 3.3.3 still apply.

Note that we have also conducted tests where we have comparedthe prices of European call
options computed using the MT distribution against those computed using the Asym distribution.
The differences are negligible. In what follows, we use the asymptotic normal mixture distribution
(3.24) and (3.25) to price options.

3.4 Option Price

Pricing a European call option using the normal mixture distribution (3.24) and (3.25) is straight-
forward. SupposeY is the time to expiration (in years) andSY is the random variable representing
the spot price of the underlying asset at time of expiry. In this section, we will takefs̃(s̃, n+ 1) to
be the p.d.f. of̃SY —in other words, we ignore the fact that this p.d.f. is only anapproximation.

We recall (2.13) and evaluate the expected value using the p.d.f. (3.24):

C = e−rY

∫ ∞

K

(s−K)fs(s, Y ) ds, (3.26)

wherer is the risk-free rate,K is the strike price, andfs(s, Y ) is the p.d.f. ofSY . If dt is the the
duration in years of each time step, then the total number of steps required in the Markov tree is
n+ 1 = Y/dt. We chosedt small enough such thatN ≫ 100.
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Figure 3.3: Comparison of cumulative distribution functions for MT, the exact Markov tree p.m.f.
(3.6), FT, the p.d.f. obtained by numerical inversion of theFourier transform (3.13), and Asym,
the p.d.f. (3.24) obtained by asymptotic approximation. Table 3.1 shows the parameters used in
the comparison in each of the panels.

Panel of Fig. 3.3 lu l1 l2 q q+ q− N ‖FT−MT‖∞ ‖Asym−MT‖∞
3.3a 5.0 0.2 0.3 0.7 0.4 0.8 150 0.0097 0.0362
3.3b 5.0 0.2 0.3 0.7 0.8 0.4 150 0.0042 0.0247
3.3c 0.05 0.2 0.3 0.5 0.3 0.7 150 0.0117 0.0320
3.3d 0.05 0.4 0.6 0.5 0.8 0.7 500 0.0065 0.0403

Table 3.1: Details of parameters used for each panel in Fig. 3.3 and numerical values of the errors.
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To relate the density ofSY to the density of̃SY , we start with

P (SY ≤ s) = P (S̃ ≤ s̃) =

∫ log s

−∞
fs̃(s̃, n+ 1) ds̃,

wheres̃ = log s. Taking derivatives of both sides with respect tos, we see that

fs(s, Y ) =
1

s
fs̃(s̃, n+ 1).

Now we can continue the calculation from (3.26) and use the decomposition (3.25)

CerY =

∫ ∞

K

s
1

s
fs̃(s̃, t) ds−

∫ ∞

K

K
1

s
fs̃(s̃, t) ds

=

∫ ∞

K

fs̃(s̃, t) ds−K

∫ ∞

K

1

s
fs̃(s̃, t) ds

= q

∫ ∞

K

g1(s̃, t) ds+ (1− q)

∫ ∞

K

g2(s̃, t) ds−Kq

∫ ∞

K

1

s
g1(s̃, t) ds

−K(1− q)

∫ ∞

K

1

s
g2(s̃, t) ds.

The value of the European call option can then be expressed interms ofµ1, µ2, σ1 andσ2 as

CerY = qS0 exp

(
σ2
1

2
+ µ1

)
Φ(x1)+(1−q)S0 exp

(
σ2
2

2
+ µ2

)
Φ(x2)−qKΦ(x3)−(1−q)KΦ(x4),

(3.27)
whereΦ is the distribution function of the standard normal, and

xi =
µi + σ2

i + log(S0/K)

σi
, xi+2 =

µi + log(S0/K)

σi
(3.28)

for i ∈ {1, 2}. Suppose that the underlying stock does not pay a dividend. ThenC is also the value
of the American call option on the stock (Bouchaud and Potters, 2003).

3.5 Empirical Results

In this section, we price options on 89 non-dividend-payingstocks from the S&P 500. Our goal is
to compare Black-Scholes model prices and Markov Tree model prices against market prices. In
what follows, we use a risk-free rate of interestr = 0.01, corresponding to the annualized rate of
return for the shortest-term US Treasury bills during the time period of testing.

37



3.5.1 Parameter estimation

To price options using the MT model, we must statistically estimate three volatility parameters
(σ, σ+, σ−) from data. Assuming we have these parameters, we define

lu = σ
√
∆t, l1 = σ+

√
∆t, l2 = σ−√∆t. (3.29)

Thenu, d, v,w, x, andy are defined by (3.7), enabling us to calculate the risk-neutral probabilities
via (2.6.1), the mixture parameters(µj, σj) defined in the Appendix B.1, and the call option price
defined by (3.27).

For the Black-Scholes model, we need only estimate one volatility parameterσ. In our tests,
we estimateσ using the sample annualized volatilitŷσ, the calculation of which proceeds via
standard procedures described, for example, by (Hull, 2009). We use the samêσ as our estimate
for σ in the MT model.

We use two primary methods to estimate the volatility parametersσ±:

1. Naive Method. We start with a time series of log returns:Z = {z1, z2, . . . , zν}, where
zj = log(Sj/Sj−1) andSj is the adjusted closing price for the stock on dayj. We now form
two disjoint subsets ofZ:

Z+ = {zj ∈ Z | zj−1 ≥ 0}, Z− = {zj ∈ Z | zj−1 < 0}

In words,Z+ (respectively,Z−) are the log returns on days for which the previous day’s log
return was non-negative (respectively, negative). We thencompute

σ̂+ = κmean
∣∣Z+ −mean

(
Z+
)∣∣ , σ̂− = κmean

∣∣Z− −mean
(
Z−)∣∣ . (3.30)

Without the scaling factorκ, the quantity on the right-hand side is the mean absolute de-
viation ofZ+ or Z−. The factorκ =

√
π/2 is included so that̂σ± scales like the sample

standard deviation (Kendall, 1944).

In this method, which is termed “MT naive” in the remainder ofthis Chapter, we usêσ±

as our statistical estimates forσ±. Note that past/present options prices are not used at all.
The only market prices that are used are historical adjustedclosing prices of the underlying
stock. Hence our estimateŝσ± do not depend on the strike price or time to expiry of the
option that we are pricing.

2. Regression Method.In this method, we start with tables of end-of-day market prices of op-
tions. If we are interested in pricing options today, we lookat yesterday’s tables. We suppose
there is one table for each stock symbol; each table lists a number of options with different
strikes and expiration dates. Given(σ, σ+, σ−) and all the parameters for the options in the
table, we can use the MT model to generate a corresponding table of model prices.

For each stock symbol, we use the algorithm of (Nelder and Mead, 1965) to search numer-
ically for the optimal values(σ+

∗ , σ
−
∗ ) that minimize the error between the tables of market

and model prices. Through this optimization,σ is set equal to the sample volatilitŷσ de-
scribed above. We also compute the estimates (3.30). In thisway, we obtain for each stock
symbol five values:(σ̂, σ̂+, σ̂−, σ+

∗ , σ
−
∗ ).
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Running the same procedure for all 89 stocks yields a matrixD of size89 × 5. We treat
each column ofD as a vector with boldfaced labelŝσ, σ̂+, σ̂−, σ+

∗
, σ−

∗
. Our idea is to use

the information contained inD to construct a model that uses one or more of the raw inputs
σ̂, σ̂+, andσ̂− to predict the optimal valuesσ+

∗
, σ−

∗
. In what follows, we useε andδ to

denote residual errors.

We first fit two ordinary least squares (OLS) linear regression models. In the first linear
model, the response variablesσ±

∗
depend only on the raw volatilitŷσ:

σ+

∗
=
[
1 σ̂

]
η+

1
+ ε+

1
(3.31a)

σ−

∗
=
[
1 σ̂

]
η−

1
+ ε−

1
(3.31b)

Since only one raw input is being used, we label the2× 1 vectors of regression coefficients
by η±

1 . The adjustedR2 values for this model can be found in the “One parameter”L2

columns of Table 3.2.

In the second linear model, the response variablesσ±
∗

depend on all three raw inputŝσ, σ̂+,
andσ̂−; we now useη±

3 to label the4× 1 vectors of regression coefficients:

σ+

∗
=
[
1 σ̂ σ̂+ σ̂−

]
η+

3
+ ε+

3
(3.32a)

σ−

∗
=
[
1 σ̂ σ̂+ σ̂−

]
η−

3
+ ε−

3
(3.32b)

The adjustedR2 values for this model can be found in the “Three parameters”L2 columns
of Table 3.2.

Comparing the adjustedR2 values, we see that both linear models perform equally well.
Both models fit fairly well forσ+

∗
, but the fit is poor forσ−

∗
, prompting explorations of

nonlinear regression strategies.

We report here the results of fitting two regression tree models (Breiman et al., 1984). In
much the same way as we have done above, we first try a model thatdepends only on one
raw input and then try a model that depends on all three raw inputs. The first model can be
written

σ+

∗
= ψ+

1 (σ̂) + δ+

1
(3.33a)

σ−

∗
= ψ−

1 (σ̂) + δ−

1
(3.33b)

The second model can be written

σ+

∗
= ψ+

3 (σ̂, σ̂
+, σ̂−) + δ+

3
(3.34a)

σ−

∗
= ψ−

3 (σ̂, σ̂
+, σ̂−) + δ−

3
(3.34b)

The adjustedR2 values for models (3.33) and (3.34) can be found in Table 3.2,in the “Tree”
columns with respective labels “One parameter” and “Three parameters.” The fit forσ−

∗

is much better for the tree models than it is for theL2 models. Unlike the linear models,
we also see that the model with more parameters fits better. Ofcourse, we should keep in
mind that these statements are made on the basis of in-sampleperformance. We conduct
out-of-sample option pricing tests below.
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Figure 3.4: We fit three p.d.f.’s to daily log return time series for GOOG (left) and DF (right). The
p.d.f’s are a kernel density estimate (KDE), a mixture of twonormals, and a single normal. The
results show that the mixture of two normals more closely matches the KDE density. See Section
3.5.2 for more details.

In the remainder of this Chapter, the label “MT Reg” will be usedto refer to the MT option
pricing model where the parameters are estimated using the three-parameter tree regression
model (3.34). Specifically, having trained the modelψ3 using the previous day’s option
prices, we evaluate the model using today’s raw estimatesσ̂, σ̂+, σ̂−. The outputs of the
model,σ+

∗ andσ−
∗ , are then used as statistical estimates ofσ+ andσ−.

Note that the training of the tree regression model uses options data from the past. However,
when we apply the tree regression model, we only need market data of stock log returns in
order to compute the raw inputŝσ andσ̂±. Just as in the naive model, the output of the tree
regression model is therefore constant over the strikes andexpiration dates of the options we
will be pricing.

As a final note, we conjecture that there exists a more fundamental method for estimating the
parameters(σ, σ+, σ−). The regression approaches considered above should be viewed as attempts
to infer the optimal model from data.

3.5.2 Empirical density functions for stock log returns

Before proceeding with option pricing tests, let us examine the distribution of log returns for two
stocks, GOOG and DF. For each stock, we assemble a time seriesZ of daily log returns for the 300
days prior to June 10, 2011. We fit a normal distribution to thetime series using the sample mean
and variance ofZ. We also apply the Expectation Maximization (EM) algorithmto fit a mixture
of two normals toZ. Finally, we use kernel density estimation (KDE) to fit a density f(z) toZ.

In Fig. 3.4, we plot the three densities for GOOG (respectively, DF) in the left (respectively,
right) panel. For GOOG, the mixture of two normals fits the KDEdensity better than the single
normal, especially at the peak of the distribution and the region near the peak. For DF, the agree-
ment between the KDE density and the mixture of two normals iseven more pronounced. The
single normal does not fit nearly as well.
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σ+
∗ σ−

∗
One parameter Three parameters One parameter Three parameters
L2 Tree L2 Tree L2 Tree L2 Tree

10 Jun 2011 0.7582 0.9106 0.7603 0.9167 0.2133 0.4981 0.2249 0.6776
13 Jun 2011 0.7387 0.8744 0.7345 0.8975 0.1529 0.6690 0.1668 0.6485
14 Jun 2011 0.7477 0.8735 0.7478 0.8997 0.1190 0.6417 0.1520 0.5868
15 Jun 2011 0.7279 0.8632 0.7229 0.9047 0.1885 0.6821 0.2051 0.7440
16 Jun 2011 0.7391 0.8842 0.7415 0.9262 0.1339 0.6446 0.1450 0.6551
17 Jun 2011 0.7661 0.8753 0.7778 0.8703 0.3015 0.6857 0.2965 0.7112
20 Jun 2011 0.7696 0.8951 0.7647 0.9017 0.0938 0.6386 0.1547 0.6649
21 Jun 2011 0.7968 0.9260 0.7932 0.9431 0.0286 0.4682 0.0218 0.5350
22 Jun 2011 0.7878 0.9185 0.7858 0.9255 0.0775 0.5495 0.1047 0.5794
23 Jun 2011 0.8323 0.9218 0.8297 0.9331 0.0435 0.4923 0.1034 0.6306
24 Jun 2011 0.8185 0.9022 0.8158 0.9160 0.0724 0.5093 0.0903 0.5303

Table 3.2: AdjustedR2 values for the linear models (3.31) and (3.32) are given in the L2 sub-
columns with respective column headings “One parameter” and “Three parameters.” Adjusted
R2 values for the tree models (3.33) and (3.34) are given in the Tree subcolumns with respective
column headings “One parameter” and “Three parameters.” Note that a reasonable fit forσ−

∗ is
provided only by Tree models; moreover, the Tree model with three parameters is the best.

We conclude that, at least for these two stocks, the mixture of two normal distributions fits
much better than a single normal. We test this for all stocks in the following way. For each
stock, we take the time series of daily log returns and fit (i) asingle normal and (ii) a mixture of
two normals. After fitting, we calculate the BIC-penalized likelihood for both (i) and (ii). The
BIC penalty term accounts for the fact that the mixture has fiveparameters instead of just two
parameters for the single normal.

We find that for 71 out of the 89 total stocks, the BIC-penalized likelihood is larger for the
normal mixture distribution. From a model selection point of view, this indicates that the normal
mixture is a better choice for modeling log return time series.

3.5.3 Comparing model and market option prices

We now test the models MT Naive and MT Reg, introduced in Section 4.3, against both Black-
Scholes model prices and market prices of options. We collected from Yahoo! Finance 11 days of
market prices for options on 89 non-dividend-paying stocksfrom the S&P 500. In what follows,
we refer to the average of the bid and ask prices as the market price of the option.

For MT Reg, the previous day’s option prices are required to train the model. Hence with
11 days of options data, we can make a fair comparison betweenmodel and market prices for the
final 10 days. For these same 10 days, we also compute option prices using the MT Naive and the
Black-Scholes models.

Here is how we compute the error on each day. Suppose we have fixed the stock symbolθ
and we focus on one particular expiration dateτ . Then there will be call options at, say,k different
strikes; letCmarket, a vector of lengthk, denote the market prices of these call options. We compute
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All Symbols BIC Symbols
Black-Scholes MT Naive MT Reg Black-Scholes MT Naive MT Reg

13 Jun 2011 0.2026 0.1395 0.1267 0.2217 0.1419 0.1186
14 Jun 2011 0.2158 0.1394 0.1276 0.2378 0.1433 0.1225
15 Jun 2011 0.1839 0.1346 0.1383 0.1988 0.1352 0.1279
16 Jun 2011 0.1732 0.1373 0.1327 0.1854 0.1387 0.1331
17 Jun 2011 0.1637 0.1411 0.1277 0.1741 0.1435 0.1293
20 Jun 2011 0.1947 0.1397 0.1322 0.2110 0.1408 0.1296
21 Jun 2011 0.1977 0.1274 0.1214 0.2182 0.1316 0.1242
22 Jun 2011 0.1923 0.1294 0.1254 0.2129 0.1349 0.1291
23 Jun 2011 0.1830 0.1197 0.1153 0.2017 0.1234 0.1158
24 Jun 2011 0.1685 0.1297 0.1348 0.1824 0.1315 0.1300

Table 3.3: For each of 10 days of testing, we record the mean ofEmodel(θ) for each of three models.
For the columns with heading “All Symbols,” the mean is takenover all 89 symbolsθ, while for
the columns with heading “BIC Symbols,” the mean is taken over71 symbolsθ for which BIC
model selection chooses a normal mixture distribution.

All Symbols BIC Symbols
Black-Scholes MT Naive MT Reg Black-Scholes MT Naive MT Reg

13 Jun 2011 0.0188 0.0047 0.0043 0.0208 0.0050 0.0038
14 Jun 2011 0.0259 0.0064 0.0036 0.0287 0.0070 0.0030
15 Jun 2011 0.0169 0.0049 0.0053 0.0191 0.0052 0.0042
16 Jun 2011 0.0162 0.0058 0.0044 0.0188 0.0064 0.0046
17 Jun 2011 0.0171 0.0082 0.0051 0.0201 0.0094 0.0056
20 Jun 2011 0.0261 0.0079 0.0058 0.0298 0.0085 0.0062
21 Jun 2011 0.0226 0.0060 0.0051 0.0251 0.0065 0.0058
22 Jun 2011 0.0219 0.0058 0.0062 0.0246 0.0064 0.0068
23 Jun 2011 0.0176 0.0036 0.0043 0.0195 0.0039 0.0047
24 Jun 2011 0.0126 0.0041 0.0051 0.0142 0.0044 0.0044

Table 3.4: For each of 10 days of testing, we record the variance ofEmodel(θ) for each of three
models. The column headings “All Symbols” and “BIC Symbols” denote the same set of symbols
described in Table 3.3.
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Figure 3.5: The left (respectively, right) panel showsEmodel (respectively,Var[Emodel(θ)]) for each
of 10 days of testing and each of the three models B-S, MT Reg, andMT Naive. See Section 3.5.3
for more details.

the mean of the absolute values of the relative errors between market and model prices:

Emodel(θ, τ) =
1

k

k∑

i=1

∣∣∣∣
Cmarket

i − Cmodel
i

Cmarket
i

∣∣∣∣ ,

where “model” can take the values B-S (Black-Scholes), MT Reg, or MT Naive. We choose this
metric because we are concerned with the percentage errors made in pricing each option that is
traded. Other error metrics, such as RMS absolute error in units of dollars, assign lower importance
to mispricing options that are worth less.

We then averageEmodel(θ, τ) over all possible expirationsτ to obtain the mean errorEmodel(θ)
committed by the model for the symbolθ. Finally, we average over all symbolsθ to obtain the
mean errorEmodel committed by the model. Through all of this,E has the units of fractional error,
i.e.,100× E has units of percentage error.

In the left panel of Fig. 3.5, we plotEmodel for each of the 10 days of testing, and for each
of the three models. The values that are plotted are also given in Table 3.3 under the heading “All
Symbols.” The values that are plotted under the heading “BIC Symbols” are averages ofEmodel(θ)
over those71 symbolsθ for which BIC selects a normal mixture distribution for the log return time
series—see Section 3.5.2 for more details.

In the right panel of Fig. 3.5, we plot the varianceVar[Emodel(θ)] for each of the 10 days of
testing, and for each of the three models. The values that areplotted are also given in Table 3.4
under the heading “All Symbols.” The values that are plottedunder the heading “BIC Symbols”
are variancesVar[Emodel(θ)] over those71 symbolsθ for which BIC selects a normal mixture
distribution for the log return time series.

Fig. 3.5 shows that both the mean and the variance of the MT model’s errors are less than
the B-S model’s errors over all 10 days of testing. The small and nearly constant variance of the
MT model’s errors hints that the method is robust and would fare well over a much longer period
of testing. In future work, we intend to pursue exactly such atest.

Tables 3.3 and 3.4 also show that, across all days of testing,the MT models perform better
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than the B-S model. Additionally, we see that using the MT models for symbols for which BIC
model selection selects a single normal density does not incur any special penalty. However, if one
examines the B-S columns in these tables, one finds that the B-S model does perform noticeably
worse on symbols for which BIC model selection chooses a mixture model.

Another visualization of the errors committed by the MT Reg model is provided in Fig. 3.6.
Here we have 10 scatterplots, one for each day of testing. Each scatterplot has 89 points of the
form (EB-S(θ), EMT Reg(θ)). On all of the scatterplots, the vertical axis has been truncated at0.5,
which is sufficient to contain all the points. The horizontalaxis has twice the range to account for
the errors made by the B-S model. Clearly, the errors made by theMT Reg model are much less
dispersed in space than those made by the B-S model. We plot a line of slope one to show that the
majority of the 89 points lies below the line, i.e., the MT Reg model’s error is less than the B-S
model’s error for the majority of symbolsθ.

The same type of visualization of errors for the MT Naive model is provided in Fig. 3.7.
Again we have 10 scatterplots, one for each day of testing. Each scatterplot has 89 points of the
form (EB-S(θ), EMT Naive(θ)). The performance of the MT Naive model is not quite as sharp asthe
MT Reg model, but the same general conclusions from the previous paragraph apply.
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Figure 3.6: We give 10 scatterplots, one for each day of testing. Each scatterplot has 89 points of
the form(EB-S(θ), EMT Reg(θ)). The majority of the points lie below the line of slope one. The B-S
model’s errors are larger and more dispersed than the MT model’s errors. See Section 3.5.3 for
more details.
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Figure 3.7: We give 10 scatterplots, one for each day of testing. Each scatterplot has 89 points of
the form(EB-S(θ), EMT Naive(θ)). The majority of the points lie below the line of slope one. The
B-S model’s errors are larger and more dispersed than the MT model’s errors. See Section 3.5.3
for more details.
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Chapter 4

Large-Scale Empirical Testing

4.1 Introduction

Despite the prominence of option pricing models in the field of mathematical finance, most such
models have never been subjected to empirical tests. In the academic literature, when a model’s
predictions are tested against data, it is typical to test only the out-of-sample pricing error using
data consisting entirely of option contracts written on either the S&P 500 or S&P 100 indices
(Bakshi et al., 1997; Nandi, 1996; Rubinstein, 1985; Bates, 2000, 1995; Corrado and Su, 1996;
AitSahlia et al., 2010; Zhao and Hodges, 2012). In this Chapter, we focus on the question of which
option pricing model achieves the best single instrument hedges, for options written on indices as
well as individual equities. To answer this question, we usea large database of both individual
equity options and index options to study the out-of-samplehedging performance of the Markov
Tree (MT) model relative to two popular competing models, and we also substantially improve the
statistical framework for fitting the MT model to observed data.

Recent work on both theoretical and empirical properties of the Markov Tree (MT) model
have indicated that this model might perform well in large out-of-sample tests (Bhat and Kumar,
2010, 2012). While the model was originally proposed to explicitly account for the short-term
dependence in an underlying asset’s log returns (Bhat and Kumar, 2010), later work established a
link between the MT model and option pricing models based on mixtures of normal distributions,
justifying the application of the MT model to all individualequity options, not just those with first-
order dependence in the log returns of the underlying stock (Bhat and Kumar, 2012). Empirical
tests of the MT model against the classic Black-Scholes model(Black and Scholes, 1973) have
been favorable thus far. The first test considered short- andmid-term European call options on six
different stocks that were components of the CAC-40 index. Across 44 days of testing, the MT
model outperformed the Black-Scholes model in out-of-sample pricing (Bhat and Kumar, 2010).
The second test considered American call options on 89 stocks that were components of the S&P
100 index. In 10 days of testing, the MT model outperformed the Black-Scholes model in aggregate
out-of-sample pricing error (Bhat and Kumar, 2012).

Previous work on the MT model did not explore the different methods for fitting the model
to data, instead relying onad hocprocedures based on historical volatilities (Bhat and Kumar,
2010, 2012). While these studies did consider genuine out-of-sample tests of pricing errors, the
issue of hedging errors made by the MT model was left unadressed. Prior work on the MT model
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compared its predictions only to that of the Black-Scholes model, leaving out comparisons to
more sophisticated models such as stochastic volatility models. Finally, while the data sets used in
previous empirical tests were not small, they were not as large as data sets used in, e.g., the implied
volatility literature.

In this Chapter, we make use of two databases of historical option prices. The first consists
of 14,367 S&P 500 index call options from Jan. 1, 2009 to Dec. 31, 2010. The second consists of
3,599,468 unique LIFFE Paris equity call options traded between 19th September, 2009 and 18th
June, 2012. Using this data, we compare the in-sample pricing errors, out-of-sample pricing errors,
and out-of-sample hedging errors made by the Black-Scholes model (Black and Scholes, 1973),
Heston’s stochastic volatility model (Heston, 1993), and the Markov Tree model (Bhat and Kumar,
2010, 2012).

In order to carry out these tests, we develop three new methods for fitting the MT model to
data, a problem that we frame as a nonlinear regression problem. The first two regression methods
we develop are, respectively, underconstrained and overconstrained least-squares methods. The
third method is a robust regression method that uses a pseudo-Huber loss function.

4.1.1 Results

Our primary result is that using any of the three regression methods developed in this Chapter,
the MT model yields better out-of-sample hedging performance than either the Black-Scholes or
Heston models.

For the overconstrained least-squares method, we develop aprobabilistic simulation proce-
dure to quantify the likelihood that the MT model will outperform Heston’s model in repeated
future trials. For the same overconstrained method, we analyze the regression residuals and show
that they fit a generalized hyperbolic distribution with heavier-than-Gaussian tails, partly explain-
ing why the robust regression method for fitting the MT model yields better results than the least-
squares method.

There are a number of other insights that we take away from ouranalysis of the data. Regard-
ing the general methods by which option pricing models are tested, we find that neither in-sample
nor out-of-sample pricing errors by themselves are indicative of the out-of-sample hedging errors
committed by any of the three models: Black-Scholes, Heston,or MT. In a similar vein, the results
obtained by analyzing S&P 500 index options do not by themselves indicate what will happen
when we analyze LIFFE individual equity options. Overall, while the volume of data we analyzed
requires a nontrivial amount of computational time to process, the previous two observations indi-
cate that our efforts yielded different conclusions than that of a more typical out-of-sample pricing
test on index option data.

Other points we learned from this study concern the different methods to fit the MT model.
The results obtained with the underconstrained least-squares method yield the smallest out-of-
sample hedging errors. However, with this method, the modelparameters are functions of the
option’s strike price and time to expiration, in conflict with the assumptions that go into the prob-
abilistic derivation of the MT model. The overconstrained fitting methods (both least-squares and
psuedo-Huber) do not assume that the model parameters depend on the strike price and time to
expiration. These methods sacrifice a small improvement in hedging error for parsimony and in-
terpretability.
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4.1.2 Prior Work

The literature on option pricing is vast and has been surveyed elsewhere (Bates, 2003; Garcia et al.,
2003; Broadie and Detemple, 2004). Here we focus our attention on work that empirically tests
the hedging performance of one or more of the models studied in this Chapter.

To our knowledge, a comparison between the hedging performance of the Black-Scholes
model, Heston’s model, and any normal mixture distribution(NMD) model has only been carried
out once before (Alexander et al., 2009). The NMD model that was tested, the Brigo-Mercurio
model, is similar to the MT model in that both utilize log return distributions that are mixtures of
normal distributions. Both models adopt a risk-neutral framework to derive closed-form option
pricing formulas (Brigo and Mercurio, 2002). However, the Brigo-Mercurio model differs from
the MT model in three key aspects:

1. The variances of the mixture components in the Brigo-Mercurio model have no interaction
with one another; each variance is a function of a distinct model parameter. In the MT model,
the variances of both mixture components interact stronglywith one another; each variance
is a function of the same two model parameters.

2. The Brigo-Mercurio model allows for an arbitrary number ofmixture components, while the
MT model allows for only two. When we restrict the Brigo-Mercurio model to two mixture
components, the option price is a function of four model parameters (Alexander et al., 2009)
rather than three for the MT model (Bhat and Kumar, 2010).

3. The procedure used to fit the Brigo-Mercurio model to data isdifferent from the procedures
described here or in past work on the MT model (Alexander et al., 2009; Bhat and Kumar,
2010, 2012).

These differences may serve to explain why the special case of the Brigo-Mercurio model tested
in earlier work showed poorer hedging performance than either the Black-Scholes model or He-
ston’s stochastic volatility model (Alexander et al., 2009). This contrasts sharply with the results
presented in this Chapter, which show that the MT model’s hedging performance is superior to that
of the other two models.

Other empirical tests of Brigo-Mercurio NMD models have beencarried out (Brigo et al.,
2003; Alexander, 2004). The main focus of such works was to assess the in-sample fit of the
NMD model’s option prices using either different distributional assumptions on the components
of the mixture (Brigo et al., 2003), or parameterizations of the NMD model that capture long- or
short-term smile effects (Alexander, 2004). These tests have not addressed the issue of hedging
performance, and have used small data sets consisting of option prices on one particular day.

In the finance literature, several authors have compared thehedging performance of stochas-
tic volatility, jump diffusion, and Black-Scholes models (Nandi, 1996; Bakshi et al., 1997; Nandi,
1998; Bakshi et al., 2000; An and Suo, 2009; Kaeck, 2012). Whilethis literature does include
comparisons between varieties of stochastic volatility models, such as models featuring both jump
diffusion and stochastic volatility, it is important to note that none of these papers include a mul-
tifactor non-stochastic volatility model in the suite of models being tested. This leaves open the
question, addressed in the present work, of whether a constant volatility model that is more com-
plex than the Black-Scholes model might outperform stochastic volatility models in out-of-sample
hedging comparisons.
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The empirical literature on stochastic volatility models typically relies on market data for
options written on the S&P 500 index. One study, focused on hedging exotic options, studies
options written on the EUR/USD Currency Option Volatility Index (An and Suo, 2009). To our
knowledge, the present study is one of the first to use individual equity option data to study the
hedging performance of Heston’s stochastic volatility model.

The literature on empirical option pricing does include work that utilizes large databases of
individual equity options. One of the earliest such works (Rubinstein, 1985) applies nonparametric
tests to Chicago Board of Exchange (CBOE) individual equity option data to check for systematic
differences between Black-Scholes prices and market prices. A later study examines a nearly two-
year span of CBOE option data on 10 stocks (Lamoureux and Lastrapes, 1993) to test implications
of the Hull-White stochastic volatility model (Hull and White, 1987).

A more recent study analyzed market data for options writtenon the S&P 100 index and
the stocks that form its 30 largest components (Bakshi et al.,2003). Using 350,000 distinct option
quotes (both calls and puts), this study examines the differences between implied risk neutral
distributions for index and individual equity options. Theeffect of variables such as the price-
to-earnings ratio and market capitalization on the skewness of implied risk neutral distributions
has been studied using four years of end-of-week option datafor 856 unique firms (Friesen et al.,
2012)—this data set comprises 67,910 distinct option quotes.

Various studies have used individual equity option data to analyze various models for the
implied volatility smile (Chou et al., 2011; Yan, 2011; Chang et al., 2012)—these studies each use
between 14,120 and 400,000 distinct option quotes. In this Chapter, we analyze a data set that is an
order of magnitude larger than the largest of the data sets wehave seen mentioned in the literature.

In all the studies we have reviewed that use individual equity option data, none compute
the hedging errors made by option pricing models. At the sametime, the use of large data sets
spanning years enables one to uncover long-term trends regarding model performance, trends that
would have been missed by those using smaller data sets covering shorter periods of time.

4.2 Option Pricing Models

For a given option, letK denote the strike price,T the time in years to expiration,r the risk-free
rate of interest, andS0 the spot price of the underlying asset. We denote the option price as a
function of the formF (x,β), wherex = [K,T, r, S0] andβ is a vector of model parameters that
must be statistically estimated from data. Typically, these model parameters include one or more
volatilities.

We define moneyness asm = S0/K, and maturity as the time to expiration in days.
Let us now review three classes of models. All models that we discuss treatr as constant

over the life of the option.

4.2.1 Black-Scholes

The underlying asset priceSt at any timet is assumed to follow the SDE

dSt = µStdt+ σStdWt, (4.1)
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whereµ andσ are constants andWt is the standard Wiener process. The annualized volatilityσ is
assumed to be constant. The Black-Scholes European call option price is

FBS(x, βBS) = Φ(d1)S0 − Φ(d2)K exp(−rT ), (4.2)

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T , (4.3)

whereΦ is the standard normal cumulative distribution function.
The Black-Scholes model is a one-parameter model withβBS = σ.

4.2.2 Heston

In Heston’s stochastic volatility (SV) model, the underlying assetSt is governed by the coupled
system

dSt = rStdt+
√
vtStdW

s
t , (4.4)

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t , (4.5)

wherevt is the instantaneous variance of the asset price,dW s
t anddW v

t are Wiener processes with
correlationρdt, θ is the long variance,κ is the rate at whichvt reverts toθ, andξ is the volatility
of the volatility. Heston’s model is a five-parameter model with βSV = (v0, ρ, θ, κ, ξ). The closed
form European call option price for Heston’s model is (Gilliand Schumann, 2010):

F SV(x,βSV) = S0P1 −Ke−rTP2, (4.6)

where

P1 =
1

2
+

1

π

∫ ∞

0

Re

(
e−iω logKφ(ω − i)

iωφ(−i)

)
dω, P2 =

1

2
+

1

π

∫ ∞

0

Re

(
e−iω logKφ(ω)

iω

)
dω

(4.7)

φ(ω) = eAeBeC (4.8)

and

A = iω(log S0 + rT )

B =
θκ

ξ2

(
(κ− ρξiω − d)T − 2 log

(
1− g2e

−dT

1− g2

))

C =

v0
ξ2
(κ− ρξiω − d)(1− e−dT )

1− g2e−dT
, and

d =
√

(ρξiω − κ)2 + ξ2(iω + ω2)

g2 =
κ− ρξiω − d

κ− ρξiω + d
.
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4.2.3 Markov Tree

Fork ∈ {−1, 0, 1}, letZk be a discrete random variable that achieves the outcomes{lk,−lk} with
probabilities{qk, 1 − qk}. Then, as originally proposed (Bhat and Kumar, 2010), the MT model
assumes the underlying asset priceSn follows the persistent (or delayed) random walk

n = 1 : log S1 = log S0 + Z0 (4.9a)

n ≥ 1 : log Sn+1 = log Sn +

{
Z1 Sn ≥ Sn−1

Z−1 Sn < Sn−1

. (4.9b)

This process generates a risk-neutral probability mass function (pmf); using asymptotic analysis
in an appropriate continuous-time limit, this pmf can be approximated very well by a mixture
of normal densities, yielding the following expression forthe price of a European call option
(Bhat and Kumar, 2012):

FMT(x,βMT)erT = q0S0 exp

(
σ2
1

2
+ µ1

)
Φ(x1) + (1− q0)S0 exp

(
σ2
2

2
+ µ2

)
Φ(x2)

− q0KΦ(x3)− (1− q0)KΦ(x4), (4.10)

where

xi =
µi + σ2

i + log(S0/K)

σi
, xi+2 =

µi + log(S0/K)

σi
(4.11)

for i ∈ {1, 2}. In this Chapter, we treat (4.10) as the MT model’s option price.
The MT model is a three-parameter model withβMT = (σ, σ+, σ−). The parametersqk, lk,

σ1, andσ2 that appear either in the stochastic process (4.9) or on the right-hand sides of (4.10)
and (4.11) are all functions of the components ofβMT—see Appendix B.1 for detailed algebraic
expressions of these quantities.

4.3 Regression

We now describe how we use option price market data to fit the three models described in Section
4.2. Suppose that on dayi we are interested in options on an underlying stock with symbol Θ.

Let VΘ,i denote the column vector of all option prices associated with the underlyingΘ
on dayi. Each row ofVΘ,i corresponds to a particular option contract, and each such contract
corresponds to a row vector of the formxΘ,i

j = (K,T, r, S0). LetXΘ,i denote the matrix obtained
by stacking these row vectors vertically, i.e.,

XΘ,i =




x
Θ,i
1

x
Θ,i
2
...

xΘ,i
ν


 ,

whereν = |VΘ,i|, the length ofVΘ,i. Let 1 ∈ R
ν denote the column vector1 = (1, 1, . . . , 1)†,

where† denotes transpose. Then, once we fix the symbolΘ and the dayi, the third and fourth
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columns ofXΘ,i are, respectively,r1 andS01; this is because the spot price of the underlying
asset depends only onΘ andi, while the risk-free rate of interest depends only oni.

For the remainder of this section, we omit theΘ and i superscripts onX andxj—these
superscripts will be used in Section 4.4.

For the data matrixX, and for each option pricing modelF (x,β), we let denoteF (X,β)
denote the result of applyingF (x,β) to each row ofX:

F (X,β) =




F (x1,β)
F (x2,β)

...
F (xν ,β)


 .

We can then formulate the nonlinear parametric regression problem

VΘ,i = F (X,β) + ǫ, (4.12)

whereǫ is a column vector of residuals. The least-squares solutionof this regression problem is

β = argmin
β

1

2
ǫ†ǫ. (4.13)

We now explain how special cases of (4.12) can be used to fit each of the option pricing models
presented in Section 4.2.

4.3.1 Black-Scholes

Empirical studies reveal that allowing the regression coefficient or volatility βBS = σ to depend
on strike and time to expiration does not improve the hedgingperformance of the Black-Scholes
model (Bakshi et al., 1997). For this reason, we takeVΘ,i to be all available call option prices for
symbolΘ and dayi, withX as the corresponding data matrix. We then set

VΘ,i = FBS(X, β) + ǫ (4.14a)

βBS = argmin
β∈[0.05,0.95]

1

2
ǫ†ǫ, (4.14b)

leading to a volatility that is independent of strike and time to expiration, a commonly used ap-
proach in prior empirical studies (An and Suo, 2009; Bakshi etal., 1997). To actually carry out the
solution, we use the R functionoptimize, which combines golden section search and interpola-
tion (R Core Team, 2012).

4.3.2 Heston

SinceβSV is made up of five parameters, by analogy with linear regression problems, one does not
expect the solution (4.13) to be unique unlessVΘ,i contains at least5 rows. Therefore, a commonly
used technique is to takeVΘ,i to be all available call option prices for symbolΘ and dayi in a
particular data set, so that the number of rowsν is always more than5. The net effect of this is to
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compute via (4.13) a set of five parameters that do not depend on the option strikeK and time to
expirationT , i.e.,

VΘ,i = F SV(X,β) + ǫ (4.15a)

βSV = argmin
β∈S

1

2
ǫ†ǫ. (4.15b)

HereS = {(v0, θ, ρ, κ, ξ) ∈ R
5 | 0.05 < v0 < 0.95, 0.05 < θ < 0.95, −0.9 < ρ < 0.9, 1 < κ <

6, 0.01 < ξ < 1.11}.
The main caveat of applying this procedure lies in the way (4.15b) is computed. The analyti-

cal gradient of the objective function—specificallyF SV—is not known, and numerically computed
gradients are computationally expensive and inaccurate. This is because the evaluation ofF SV re-
quires the numerical computation of an oscillatory integral. For these reasons, derivative-free
rather than gradient-based optimization techniques are used to solve forβ (Gilli and Schumann,
2010; Mikhailov and N̈ogel, 2003).

Two popular derivative-free techniques that are used to solve (4.13) for Heston’s model
are the Nelder-Mead algorithm (Fiorentini et al., 2002; West, 2005) and differential evolution
(Gilli and Schumann, 2010). Using artificially created option data from a set of known parameters,
(Gilli and Schumann, 2010) shows that differential evolution outperforms other derivative-free op-
timization techniques. We choose the Nelder-Mead algorithm for two reasons. First, differential
evolution requires a prohibitively large number of evaluations of the objective function to achieve
reasonable accuracy for a large-scale empirical test. Second, our tests on a subsample of LIFFE
option data reveal that using Nelder-Mead with 500 iterations results in better convergence than
differential evolution. The specific implementation of theNelder-Mead algorithm we use is pro-
vided by the R functionoptim (R Core Team, 2012).

4.3.3 Markov Tree

We now describe three methods to fit the MT model to data. All three methods are implemented
using gradient-based optimization, leveraging the smoothness of the MT model’s option price with
respect to the parametersβMT. For all three methods, we defer any discussion of implementation
details to Section 4.3.3.

OverconstrainedL2

The first method we consider is analogous to the procedure described above for Heston’s stochastic
volatility model. Using the full set of market option quotesfor symbolΘ and dayi, we formulate
the regression problem and least-squares solution as

VΘ,i = FMT(X,β) + ǫ (4.16a)

βMT = argmin
β∈B

1

2
ǫ†ǫ, (4.16b)

whereB = {(x1, x2, x3) ∈ R
3 | 0.05 ≤ xj ≤ 0.95, j = 1, 2, 3}. This formulation yields MT

volatilities that do not depend on option strikes and expiration dates.
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Overconstrained pseudo-Huber

Consider the loss function

L(x) = δ

(√
1 +

(x
δ

)2
− 1

)
, (4.17)

adapated from the pseudo-Huber loss function (Jama, 2011).With this loss function, we can
formulate an alternative solution to the regression problem (4.16a), one in which we replace the
squared error loss function withL(x):

βMT = argmin
β∈B

L(ǫ), (4.18)

whereǫ is defined as in (4.16a). The loss functionL contains a parameterδ; for our empirical tests,
we setδ = 0.01, in which caseL(x) is a smooth approximation to the absolute value function|x|.
Note thatlimδ→0 L(x) = |x|, pointwise inx. BecauseL is less sensitive to outliers than the squared
loss, the solutionβMT may be thought of as a robust solution to the regression problem (4.16a).
The smoothness ofL enables us to apply gradient-based optimization techniques to solve (4.18).

UnderconstrainedL2

We consider a special case of (4.12) in which we use only one row of the data matrixX and the
corresponding row of the vectorVΘ,i:

[VΘ,i]j = FMT(xj,β(j)) + ǫ. (4.19)

SinceβMT
(j) is a vector of three parameters, this problem is underconstrained, i.e., the setFj =

{β | [VΘ,i]j = FMT(xj,β)} is infinite. For this reason, we treat the nonlinear equationas a
constraint, and solve the problem

βMT
(j) = argmin

β∈Fj

‖β − b‖22, (4.20)

whereb = (0.5, 0.5, 0.5). This formulation yields a strike- and expiration-dependent set of MT
volatilities.

Recall from Section 4.2.3 that the parameter vectorβMT can be used to calculate three risk-
neutral probabilities{qk}1k=−1. Let Q = {β ∈ R

3 | 0 < qk(β) < 1, −1 ≤ k ≤ 1}. For all
index options considered in this study, when we find the solution (4.20) and insert it into (4.19),
the residual errorǫ is zero to machine precision. We also find thatβMT

(j) ∈ Q, i.e., theqk’s are valid
probabilities.

For approximately103 individual equity options considered in this study, solving (4.20)
yieldsβMT

(j) /∈ Q. For only these options, we solve the following problem instead of (4.20):

βMT
(j) = argmin

β∈Fj∩Q
‖β − b‖22. (4.21)

In practice, this yields solutions that satisfy both theFj andQ constraints.
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Implementation Details

To obtain either of the overconstrained solutions (4.16b) or (4.18), we use the L-BFGS-B algo-
rithm (Byrd et al., 1995). This is a quasi-Newton solver that uses a limited memory (L) version
of the BFGS update formula, while also handling box constraints (B). Our use of a quasi-Newton
solver means that we avoid calculating the exact Hessian of the objective function. The L-BFGS-B
implementation we use is built into theoptim command in R (R Core Team, 2012).

To obtain either of the underconstrained solutions (4.20) or (4.21), we use the package
nloptr (Ypma, 2011), an R interface to thenlopt package (Johnson, 2013). Specifically,
we use this package’s implementation of an augmented Lagrangian method (Conn et al., 1991;
Birgin and Martinez, 2008).

For all of the codes/algorithms just mentioned, we pass user-defined functions that use exact
formulas to compute the gradient of the MT option priceFMT with respect toβMT. This gradient
is given in detail in Appendix B.2.

For the overconstrained methods, our results show that at a computed optimumβMT, the
gradient of the objective function is near zero. We also find that either the Hessian at the optimum
is positive definite, or the computed optimum lies on the boundary of the feasible setB.

For the underconstrained methods, we rely on the optimization algorithm to single out a
unique element of the feasible set. That is, we are less interested in whether the algorithm con-
verges to a local minimum, and more interested in how well theconstraints are satisfied. In all of
our tests, the solution of either (4.20) or (4.21) yields (i)valid risk-neutral probabilities{qk}1k=−1

and (ii) residual errors in (4.19) that are zero to at least four decimal places, sufficient for the
purposes of this study.

4.4 Tests

In the previous section, we described five procedures for fitting an option pricing model to market
data: one Black-Scholes procedure, one stochastic volatility procedure, and three MT procedures.
All five procedures can be viewed as special cases of (4.12), which, for an option on the underlying
Θ that is being priced on dayi, reads

VΘ,i = F (XΘ,i,βΘ,i) + ǫΘ,i. (4.22)

Here we have highlighted the fact that the data matrixX, the regression coefficientsβ, and the
residualsǫ all depend onΘ andi. In what follows, we refer toǫΘ,i as thein-sample pricing errors.

4.4.1 Out-of-Sample Pricing Error

Having computedβΘ,i, we can use this vector of regression coefficients to price options on the
underlyingΘ on dayi+ 1. This leads to the one dayout-of-sample pricing errorvector

eΘ,i+1 = VΘ,i+1 − F (XΘ,i+1,βΘ,i). (4.23)

Note thatVΘ,i+1 consists of all available call option prices in our data set for dayi+ 1 and symbol
Θ. The data matrixXΘ,i+1 is such that the risk-free interest rate and spot prices are current as of
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dayi+1, while the strikes and the expiration dates are read from thecall option contracts available
on dayi+ 1 for symbolΘ.

4.4.2 Out-of-Sample Hedging Error

Hedging is the process of creating a risk-free portfolio consisting of risky assets. Owing to trans-
action costs and other financial considerations, a simple and practical form of such a portfolio is
one which uses the minimum number of financial instruments (Bakshi et al., 1997). Hedging with
a portfolio consisting only of an option and shares of its underlying is commonly referred to as
single instrument hedging.

Consider a portfolio created by sellingonecall option at the priceV K,T
Θ,i and buyingn shares

of it’s underlying at the price ofS0 per share. The residual cash obtained through this transaction at
time t = 0 on dayi is πK,T

Θ,i = V K,T
Θ,i −nS0. The value of this portfolio depends on the market price

of the call option and the market price of its underlying. A change in the price of the underlying
at timet = ∆t leads to a change in the call option price and the value of the portfolio. We seek a
portfolio whose value is insensitive to small changes in theunderlying price. For the BS and MT
models, this can be achieved by choosingn such that

∂πK,T
Θ,i

∂S0

=
∂V K,T

Θ,i

∂S0

− n = 0.

Approximating the market priceV K,T
Θ,i by the model priceF (xΘ,i

j ,βΘ,i−1), we have

n =
∂V K,T

Θ,i

∂S0

≈
∂F (xΘ,i

j ,βΘ,i−1)

∂S0

. (4.24)

With thisn, the portfolio described above with valueπK,T
Θ,i is often called adelta neutralportfolio.

For the MT model, we report the exact forms ofn in Appendix B.3. Since the only stochastic term
in the Black-Scholes and MT models is the stock price, a delta neutral portfolio can be created
using a single option and its underlying. This cannot be donefor a stochastic volatility model,
as the value of the portfolio is driven not just by the stock price but also the stochastic volatility.
Nevertheless, for Heston’s model, and for a portfolio consisting of a call option and shares of its
underlying, we can choosen such that the variance of the portfolio is minimized (Bakshi et al.,
1997). This is called a minimum variance hedge.

Equation (4.24) represents continuous rebalancing—the number of sharesn have to be con-
tinuously changed. As this is not possible, in practice, a portfolio is rebalanced (equivalently,n is
adjusted) only at discrete times, typically each day at the end of trading.

To evaluate the hedging performance of different models, wefirst construct a risk-free port-
folio at time t = 0 (day i) consisting of an option (with strikeK and time to expirationT ) and
n shares of its underlying (with symbolΘ). To calculate thisn, we use (4.24) withβ computed
using data on dayi − 1. We invest the residual cash generated into a risk-free bondmaturing at
time t = ∆t on dayi + 1. We assess the value of the stock and option at timet = ∆t (dayi + 1)
by closing the portfolio, thereby generating a cash value ofnS∆t−V K,T−∆t

Θ,i+1 . Maturity of the bond

generates anotherπK,T
Θ,i e

ri∆t on dayi+ 1. The hedging error of this self financed portfolio created
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on dayi and liquidated on dayi+ 1 is then

HK,T
Θ,i = πK,T

Θ,i e
ri∆t − V K,T−∆t

Θ,i + nmodelS∆t. (4.25)

This procedure of using data on dayi − 1 to computeβ andn, form the portfolio on dayi, and
liquidate the portfolio on dayi+ 1 follows prior work (Bakshi et al., 1997).

4.5 Data

4.5.1 LIFFE Paris individual equity options

Market data on different LIFFE contracts traded electronically is available for download from the
websitehttp://www.liffe.com/data/. Using a Python script, we download data every-
day for all contracts traded on the LIFFE exchange and stack it in a MySQL database. In this way,
we build sixteen different databases based on different markets and different contract types. To
keep the analysis feasible, we consider only the Paris Equity Options data for this study. We con-
sider all options contracts written on all stocks on the LIFFE Paris Equity Options traded between
September 18, 2009 and June 18, 2012, encompassing 707 trading days worth of data. To further
reduce the size of the data set and keep computational time tractable, we only consider call op-
tions traded within this period, leaving 7,361,451 unique options. We then apply standard filtering
techniques to improve the fitting process for different models, and to remove the bias involved in
pricing options that are not traded. Specifically, we removefrom our data set

• short-term options, i.e., options with maturity strictly less than seven trading days,

• deep in-the-money options (with moneynessS0/K ≥ 1.4), and

• deep out-of-the-money options (with moneynessS0/K ≤ 0.8),

leaving us with 3,483,461 call options in the LIFFE data set.This number of unique options is
approximately 100 times greater than the number of options analyzed in prior empirical hedging
studies (Bakshi et al., 1997; Nandi, 1996; Zhao and Hodges, 2012).

For this data set, the option price that we use is the LIFFE settlement price. Settlement
prices are determined using the trade-weighted average market value of the option together with
a variety of technical considerations spelled out in LIFFE guidelines (LIFFE, 2006). Using these
settlement prices avoids pitfalls associated with daily closing prices that have been documented in
the literature (Rubinstein, 1985).

In Table 4.1, we report the number of options on (i) all 118 LIFFE option symbols and (ii)
25 LIFFE option symbols with non-dividend-paying underlying in our database categorized by
moneyness-maturity. In Table 4.2, we also report the average price of options in each of the above
categories. We note that, for all moneyness-maturity categories, the average price of options on
stocks that do not offer dividends is smaller than the average price of all options.

4.5.2 SPX options

CBOE market data on traditional European style options on the S&P 500 index for 2009 and
2010 is available fromhttp://www.deltaneutral.com. Options on the S&P 500 index

58



have been considered in empirical studies before (Bakshi et al., 1997, 2000; Nandi, 1996) and are
known to be the benchmark options to test European option pricing models (Rubinstein, 1985;
Nandi, 1996). Again, we follow standard filtering techniques (Kaeck, 2012); after removing all
put options, we further remove

• short-term options, i.e. options with maturity strictly less than seven trading days,

• deep in-the-money options (with moneynessS0/K ≥ 1.3),

• deep out-of-the money options (with moneynessS0/K ≤ 0.8), and

• options with zero trading volume,

leaving us with an overall SPX data set made up of 5,683 call options for 2009, and 14,367 call
options in 2010. This data set consists of bid and ask prices;following standard convention
(Bakshi et al., 1997; Kaeck, 2012), we take the midpoint of thebid and ask prices to be the the
market option price.

We report the number of SPX options categorized by moneynessand maturity in Table 4.3.
Here, we note that after filtering, there are no long-term options (i.e., with maturity exceeding180
days) in 2010. In Table 4.4, we present the average price of S&P 500 index options categorized by
moneyness and maturity.

4.5.3 Interest rates

We use 90-day LIBOR rates as our proxy for the risk-free rate ofinterest. The risk-free rate for any
option contract dated in any given month is assumed to be the 90-day LIBOR rate at the beginning
of the corresponding month.

4.5.4 Dividends

During the period of study, 2009–2012 for LIFFE options and 2009–2010 for SPX options, divi-
dends paid by either LIFFE or S&P 500 equities were either zero or negligible.

4.6 Results

In this section, we present results on four data sets:

• all LIFFE data as described in Section 4.5—see Tables 4.5 and4.9.

• the subset of the LIFFE data consisting of options on 25 non-dividend-paying stocks—see
Tables 4.6 and 4.10.

• SPX data from calendar year 2009—see Tables 4.7 and 4.11.

• SPX data from calendar year 2010—see Tables 4.8 and 4.12.
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Our primary result is that, for any of these data sets, any of the regression procedures for fitting
the MT model described in Section 4.3.3 yield smaller out-of-sample hedging errors than either
Heston’s model or the Black-Scholes model.

All entries of Tables 4.5-4.12 are computed in the followingway. First, we compute the
appropriate error (i.e., in-sample, out-of-sample pricing, out-of-sample hedging) for each option
in the indicated data set. We then bin options into moneyness-maturity categories. We include
“Overall” bins that denote either all options, options binned only by moneyness, or options binned
only by maturity. Finally, we calculate the mean absolute error in each bin. All LIFFE errors are
in Euros (e), while all SPX errors are in US dollars ($).

Note that an option must exist in our data set on both dayi and dayi + 1 in order for a
hedging error to be calculated.

4.6.1 Comparison of different option pricing models

In our first set of results, we compare the Black-Scholes model, Heston’s stochastic volatility
model, and the MT model using the overconstrainedL2 fitting procedure from Section 4.3.3.

In-Sample Pricing Errors. The first panel of Table 4.5 shows the in-sample errors for allthree
models on the entire LIFFE data set. Heston’s model featuresan overall error (e0.1981) that
is e0.02 less than the overall error committed by the second best model, the MT model. This
is not surprising; in the framework of nonlinear regression, one expects a model with two extra
parameters to provide a better in-sample fit.

Note that the MT model outperforms Heston’s model for long-term options, i.e., those with
maturity greater than180 days. Two possible causes for this are (i) the necessity of using derivative-
free optimization to fit Heston’s model, and (ii) the possibility that the MT model fits option data
on dividend-paying stocks better than Heston’s model.

We contrast the results on the entire LIFFE data set with results on the subset of the LIFFE
data consisting of options on stocks that pay no dividend. From the first panel of Table 4.6, we see
that Heston’s model performs much better than both the Black-Scholes and MT models, beating
the MT model in overall performance by aboute0.05. Comparing the in-sample portions of Tables
4.5 and 4.6, we see that the three models reduce their overallerrors by 44.37% (Black-Scholes),
46.16% (MT), and 66.18% (Heston). Based on this, we hypothesize that Heston’s model performs
better when there is complete information about the market,e.g., when dividend data is available.

Turning to Tables 4.7 and 4.8, we see one of the reasons for working with a large database of
individual equity options: the results for index options can differ. Looking at the overall in-sample
errors in these tables, we see that Heston’s model outperforms the MT model for 2009, but that the
MT model outperforms Heston’s model for 2010. Unlike the results for LIFFE options, the SPX
option results show that Heston’s model fit long-term options particularly well for both 2009 and
2010 index options. This last result confirms tests carried out in the litearture (Bakshi et al., 1997).

Out-of-Sample Pricing Errors. The second panels of Tables 4.5-4.8 show out-of-sample pricing
errors for each of the four data sets described earlier.

For LIFFE equity options, whether restricted to non-dividend-paying underlying or not, He-
ston’s model yields smaller overall errors than either the Black-Scholes or MT models, and yet for
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SPX index options for either 2009 or 2010, the MT model’s overall errors are the smallest. We
again see a difference in model performance between index and individual equity options.

It is clear from the results that all models’ out-of-sample pricing errors exceed their in-sample
pricing errors; for the full LIFFE data set, specifically, the overall out-of-sample errors are larger
by 1.4%, 2.3%, and 4.8% than the overall in-sample errors forthe Black-Scholes model, the MT
model, and Heston’s model, respectively. For the 2009 SPX data set, the model-wise increases
in overall pricing errors from in-sample to out-of-sample tests are 23.53%, 54.11%, and 139.8%,
while for the 2010 SPX data, these model-wise increases are 22.99%, 23.27%, and 27.94%.

There are two trends that we note here. First, the out-of-sample results for all models are
much closer to the in-sample results for LIFFE individual equity options than they are for S& P
500 index options. This shows, again, that it is useful to test option pricing models on both types
of data sets.

Second, for both LIFFE and SPX data sets, Heston’s model consistently has the largest
percentage increase in overall pricing errors from in-sample to out-of-sample tests. This leads us
to hypothesize that Heston’s model may be overfitting; we findmuch stronger support for this in
our hedging results below.

Since LIFFE and SPX results do not show consistency in the reduction of out-of-sample
pricing errors as a function of model complexity (i.e., number of parameters), we turn to another
out-of-sample test to determine if Heston’s model either overfits the data or is truly superior, as the
in-sample results indicate.

Out-of-Sample Hedging Errors. Out-of-sample hedging errors are displayed in the final panels
of Tables 4.5-4.8, for each of the four data sets described earlier.

On the entire LIFFE data set, the MT model’s overall hedging errors are 41.88% lower than
that of Heston’s model, and 301.7% lower than that of the Black-Scholes model. For the subset
of LIFFE data consisting of options on non-dividend-payingunderlying, the MT model’s overall
hedging errors are 41.32% and 296.84% lower than for Heston’s model and the Black-Scholes
model, respectively. For SPX options from 2009 (2010), the MT model’s overall hedging errors
are 57.68% (69.47%) and 86.5% (71.13%) smaller than what we find for Heston’s model and the
Black-Scholes model, respectively.

There are several insights that we obtain from these results. First, and most importantly,
neither the in-sample nor the out-of-sample pricing performance is indicative of the out-of-sample
hedging performance of an option pricing model. Second, among all the performance metrics
considered, the hedging errors seem to be least affected by not accounting for the dividends in the
option pricing models—this is indicated by the consistencyof the hedging results across Tables
4.5 and 4.6.

We note another consistent trend in the out-of-sample hedging results in all four Tables 4.5-
4.8. For the MT model, if we bin errorsonly by maturity, then short-term options (i.e., with
maturity less than60 days) yield the best hedging performance; similarly, if we bin errorsonly by
moneyness, then the most out of the money options (i.e., withm < 0.94) yield the best hedging
performance.

Next, we visualize and assess hedging errors in a different way. Suppose our data set is one
of the four data sets described at the beginning of this section. For a given stock symbolΘ and a
given dayi, we sum theraw hedging errors due to all different options available on dayi on the
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underlyingΘ. This yields a hedging error for symbolΘ on dayi. We sum overΘ, and thereby
obtain a time series ofmarket hedging errors. As there are four data sets, we obtain four time
series for each of the three models that were tested.

In Figure 4.1, we plot these four time series for Heston’s model (blue) and the MT model
(red). The time series for the Black-Scholes model is omitted, because it increases the vertical
scale of the plot to an extent that we miss details in the blue and red curves. The figure indicates
that the red curves are enveloped by the blue cruves, meaningthat on each day, it is usually the
case that the market hedging error is larger for Heston’s model than for the MT model. For the full
LIFFE data set (respectively, the non-dividend-paying LIFFE data set), the MT market hedging
error is smaller in absolute value than that of Heston’s model for 603 (579) out of 705 days. For
the SPX data set, and for both 2009 and 2010, the MT market hedging error is smaller in absolute
value than Heston’s model’s market hedging error 269 days out of a total of 354 days. Again we
see remarkable consistency across all four time series; in all four cases, the empirical probability
that the MT model yields smaller hedging errors is between0.76 and0.85.

Apart from showing that the MT model outperforms Heston’s, these plots also reveal how
the model’s daily hedging errors vary on a daily basis. This variation has not been plotted before,
even in large-scale empirical studies. The plots clearly show that there are several days, e.g., near
09-2011 for the LIFFE plots and 01-2009 and 05-2010 for the SPX plots, where the market hedging
error for Heston’s model is much larger than for the MT model.On the other hand, when Heston’s
model has a smaller hedging error than the MT model, the difference is small. These fine-grained
results are important from a risk management perspective, especially if one seeks a model that
never “blows up.” An overly narrow focus on errors averaged across time obfuscates this point.

We form two overall conclusions from the out-of-sample hedging results. First, because
the MT model consistently produces the least out-of-samplehedging errors, both in the overall
categories and in almost all moneyness-maturity bins, the MT model should be used for risk man-
agement purposes rather than the other two models studied. Second, the MT model achieves its
superior hedging performance with two fewer regression coefficients than Heston’s model. While
the in-sample pricing errors decrease as a function of modelcomplexity, the out-of-sample hedging
errors are minimized by a model with three parameters (MT) rather than five (Heston), leading us
to believe that Heston’s model does indeed overfit the data.

4.6.2 Performance of MT model regression procedures

Next, we compare the three methods for fitting the MT model described in Section 4.3.3. The
layout of results in Tables 4.9-4.12 follows that of Tables 4.5-4.8; the main difference is that the
three models considered previously are replaced by three methods for fitting the MT model: the
overconstrainedL2 method, the overconstrained pseudo-Huber method, and the underconstrained
L2 method.

In-Sample Pricing Errors. In-sample pricing errors for each of the four data sets described
above are shown in the first panels of Tables 4.9-4.12. The underconstrainedL2 method has resid-
ual errors that are zero to four decimal places; these valuesare omitted here. Focusing our attention
on the two overconstrained methods, we see that in overall error for the four data sets consid-
ered, the pseudo-Huber method is better than theL2 method bye0.0094, e0.0067, e0.0336, and
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e0.049. However, examining each individual moneyness-maturity bin, we see that theL2 method
has a smaller error for many bins, indicating that neither method is clearly superior in terms of
in-sample fit.

Out-of-Sample Pricing Errors. In the second panels of Tables 4.9-4.12, we present out-of-
sample pricing errors for the three regression methods and each of the four data sets. The un-
derconstrainedL2 scheme clearly outperforms all other regression procedures across all four data
sets. This is true not only for overall errors, but is also true for nearly every moneyness-maturity
category. Moreover, comparing the performance of the underconstrainedL2 MT method to that of
Heston’s model on each of the four data sets, we see that the MTmethod consistently produces
significantly smaller out-of-sample pricing errors.

These results alone justify our inclusion of the underconstrainedL2 method. While strike-
and maturity-dependent volatilities are inconsistent with the assumptions in the MT stochastic
model, they do lead to the smallest out-of-sample errors. From a practitioner’s point of view, we
expect the underconstrainedL2 method to be the method of choice for fitting and using the MT
model.

Between the two overconstrained methods, the pseudo-Huber method has smaller overall
errors on the LIFFE data sets and on the 2010 SPX data set, while theL2 method has smaller
overall errors on the 2009 SPX data set. For LIFFE options, ifwe focus our attention on short- and
medium-term options, the pseudo-Huber method performs noticeably better than theL2 method;
theL2 method is the superior method for long-term options. These statements do not carry over
to the SPX data set, indicating again the difference betweentests for individual equity options and
index options.

Out-of-Sample Hedging Errors. The third panels of Tables 4.9-4.12 show the out-of-sample
hedging errors for each of the four data sets and each of the three regression methods. As with the
out-of-sample pricing errors, the underconstrainedL2 method yields smaller overall errors across
all four data sets.

The overall hedging errors for the overconstrainedL2 and the overconstrained pseudo-Huber
methods are greater than the overall hedging errors for underconstrainedL2 method by 10.65% and
9.69%, respectively, for 2009 SPX options and 29.34% and 27.38%, respectively, for 2010 SPX
options. For both LIFFE data sets, the underconstrainedL2 method yields overall errors that are
between 15.6% and 16.5% smaller than with either of the overconstrained methods.

These results show that the underconstrainedL2 regression MT method produces the least
out-of-sample hedging errors across all data sets, not justoverall, but also in each individual
moneyness-maturity bin.

Following this procedure, a practitioner can choose a unique option with which to form a
risk-free portfolio, and then estimate the MT model parameters for this particular option using the
method outlined in section 4.3.3. This circumvents the needto collect data for all options traded
on a given day for a given symbol, a requirement for the overconstrained methods.

From these results, we also note that the overconstrained pseudo-Huber method slightly
outperforms the overconstrainedL2 method, in the overall category, for all four data sets.

The results help us draw two final conclusions. First, from a practical perspective, the un-
derconstrainedL2 regression MT model provides the least out-of-sample hedging errors. This
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procedure allows the MT model parameters to depend on the strike and maturity of the option,
leading to an increase in the number of model parameters. While we have conducted large scale
out-of-sample empirical tests to guard against drawing conclusions from the in-sample fit of this
method, we note that this procedure does not conform with MT model assumptions that do not
allow the stock price process, and, in turn, the model parameters, to depend on option’s strike and
maturity. Second, the overconstrained pseudo-Huber method, an example of a robust nonlinear
regression procedure, produces the least out-of-sample hedging errors among all overconstrained
regression procedures carried out in this Chapter. This regression procedure is consistent with MT
model assumptions, and does not require more time to run thanthe standard overconstrainedL2

method. While the improvement over the overconstrainedL2 method may be slight, the results
lead us to hypothesize thatsomerobust regression technique for fitting the MT model may yield a
much larger improvement over theL2 method.

4.7 Error Analysis

In order to achieve a better quantitative understanding of the superior hedging results displayed
by the MT model in Section 4.6, we analyze the MT model’s errors. First, we show that for the
overconstrainedL2 MT model, the tails of the in-sample residual distribution decay more slowly
than the tails of the normal distribution, helping to explain why the robust pseudo-Huber regression
procedure for fitting the MT model yields marginally better results. Second, we show using a
statistical simulation procedure that the MT model’s superior hedging performance is not likely to
be due to chance, but instead due to the model’s robustness with respect to noise in option data.

In this section, we restrict our attention to the SPX data set, enabling us to run a reasonable
number of simulations. This is justified by the results from Section 4.6, which show consistency
of MT model results across LIFFE and SPX options. In what follows, the underlyingΘ will be the
S&P 500 index, rather than an individual equity.

4.7.1 In-Sample Error Analysis

While fitting the regression model as in (4.22), we obtain the residual vectorǫΘ,i for each day
i. When we use the overconstrainedL2 method from Section 4.3.3, the regression is performed
under the assumption that the residuals are (i) independentof option strike and maturity, and (ii)
independent and identically distributed (i.i.d.) samplesfrom an error random variable. We consider
data from 2009 and 2010 separately since our data shows noticeably different liquidity of options
for these two years that is also captured in our results.

Collecting all error vectorsǫΘ,i for 2009 and 2010, we obtain, respectively, 5,647 and 14,366
i.i.d. samples of the random variablesE2009 andE2010. We then subject our samples ofE2009

andE2010 to exploratory data analysis. We then fit a generalized hyperbolic distribution (GHD)
to both these samples and find the maximum likelihood estimates via expectation maximization.
We fit a GHD for three reasons. First, the GHD has been used withsuccess in finance where
heavier-than-normal tails arise (McNeil et al., 2005). Second, the GHD includes as special cases,
other distributions of interest: hyperbolic, normal inverse Gaussian, variance gamma, student t,
and normal that enables us to perform likelihood ratio tests. Third, the best fit GHD is a very good
match for the kernel density estimates ofE2009 andE2010—see Fig 4.2).
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We use the five parameter parametrization of the GHD (Luethi and Breymann, 2013, section
4.2). The parameters of the GHD that best fitsE2009 andE2010 are given in Table 4.13.

We employ likelihood ratio tests and AIC model selection to test the error distribution. For
the samples ofE2009, the likelihood ratio tests reject the hypothesis that the true underlying distri-
bution belongs to four of the five special cases of the GHD mentioned above—the exception is the
normal inverse Gaussian distribution, with ap-value of 0.05. For the samples ofE2010, the likeli-
hood ratio test rejects that the true underlying distribution belongs to any of the five specical cases
of the GHD mentioned above. For bothE2009 andE2010 samples, AIC model selection criteria also
selects GHD as the best fitted model for the 2010 errors.

Taken together, these exploratory results indicate that the GHD, rather than any of the five
special cases we tested, is a good fit for the residuals from 2009 and 2010. Note that the tail decay
in the GHD is given by|x|aemx, wherea = λ− 1 andm differs for the left and right tails. For our
fitted distribution,a is−1.4 (0.22) for 2009 (2010) respectively. The exponentm is 0.56 (−0.472)
for the left (right) tail for 2009 and1.048 (−0.49) for the left (right) tail for 2010. This indicates
that the fitted GHD is asymmetric and has heavier tails than the normal distribution.

The tails of the GHD fitted to the 2009 and 2010 residuals are inconsistent with the assump-
tion that the errorǫ in (4.16a) is normally distributed. Ifǫ does indeed have heavier-than-normal
tails, then the least-squares solution (4.16b) will not be the maximum likelihood estimator ofβ
in (4.16a). On the other hand, the pseudo-Huber solution (4.18) will be close to the minimizer of
‖ǫ‖1, which is the maximum likelihood estimator ofβ when the errorǫ has a Laplace distribution
with asymptotic tail decaye−b|x|. The tail decay of the fitted GHD is closer to Laplace than normal,
helping to explain why the pseudo-Huber method performs marginally better than theL2 method.

4.7.2 MT Model Performance: Perturbed Regression Coefficients

Let j be a fixed day in either 2009 or 2010, and leteΘ,j denote a vector of samples from the GHD
using the best fit parameters from Table 4.13 for the appropriate year. We assumeeΘ,j has the same
number of components asVΘ,j in (4.22), i.e., the number of available call options for underlyingΘ
on dayj. Let βΘ,j denote the MT regression coefficients computed using (4.16b) for underlying
Θ on dayj. Then define the vectorVΘ,j of simulated option prices by

VΘ,j = FMT(XΘ,j ,βΘ,j) + eΘ,j. (4.26)

By comparison with (4.22), we see that ifǫ ande have the same distribution, thenV andV have
the same distribution as well.

We now useVΘ,j in place of the market pricesV Θ,j in (4.16a) and obtain a new set of

regression coefficients̃β
Θ,j

using (4.16b). Using the coefficients̃β
Θ,j

on dayj = i−1, we compute
out-of-sample hedging errors using a self-financed portfolio created on dayi and liquidated on day
i + 1 as in Section 4.4.2. Repeating this procedure50 times, and aggregating the data across each
year, we obtain282, 350 samples ofHMT

2009 and718, 300 samples ofHMT
2010, whereHMT

y is a random
variable representing the out-of-sample hedging error made by the MT model on one day in yeary.
Note that we repeat the procedure 50 times so that we have enough samples of the random variable
τy (explained next) such that the mean ofτy converges to a constant value.

To relate the MT model’s performance to that of Heston’s model, we computeτy = |HSV
y | −

|HMT
y |, whereHSV

y is the out-of-sample hedging error for Heston’s model computed as in Section
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4.4. In Figure 4.3 we show kernel density estimates (KDE) ofτy for y = 2009 andy = 2010.
The significant asymmetry present in both years’ KDE plots indicate that the MT model’s superior
hedging performance persists even when market prices differ from historical market prices. To
quantify the improvement in performance, we report the deciles of τy in Table 4.14. From the
table, it is clear that only about 20% of SPX options can be hedged better using Heston’s model.
The mean ofτ2009 andτ2010 are $0.8707 and $0.9089 respectively. Aslo, the empirical cumulative
distribution function value ofτ2009 and τ2010 at zero is $0.2366 and $0.2141 respectively. The
performance of the MT model indicates its robustness with respect to noisy option prices.
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All 118 stocks 25 non-dividend paying stocks
< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall

< 0.94 281602 280725 411781 974108 58022 55454 78524 192000
0.94–0.97 98580 65437 97078 261095 16829 11843 16207 44879

0.97–1 102438 65866 98096 266400 17217 12177 17116 46510
1–1.03 99652 63418 91491 254561 16897 11750 16430 45077

1.03–1.06 92177 59610 86991 238778 15815 11204 15664 42683
> 1.06 506405 445070 653051 1604526 97161 89247 124452 310860
Overall 1180854 980126 1438488 3599468 221941 191675 268393 682009

Table 4.1: Number of options binned by moneyness-maturity category for all 118 LIFFE option
symbols and 25 LIFFE option symbols with non-dividend paying underlying.

All 118 stocks 25 non-dividend paying stocks
< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall

< 0.94 0.31 1.05 2.60 1.49 0.26 1.01 1.82 1.11
0.94–0.97 0.79 2.10 4.11 2.35 0.61 1.75 2.58 1.62

0.97–1 1.24 2.64 4.63 2.84 0.89 2.12 2.98 1.98
1–1.03 1.85 3.23 5.01 3.33 1.20 2.41 3.11 2.21

1.03–1.06 2.59 3.96 5.67 4.05 1.58 2.97 3.42 2.62
> 1.06 6.46 7.95 8.98 7.90 3.64 5.26 4.80 4.57
Overall 3.38 4.68 6.08 4.81 1.98 3.30 3.49 2.95

Table 4.2: Average option price in Euros (e) in each moneyness-maturity bin for all 118 LIFFE
option symbols and for 25 LIFFE option symbols with non dividend paying underlying.

2009 SPX index options 2010 SPX index options
< 60 60–180 > 180 Overall < 60 60–180 Overall

< 0.94 816 196 67 1079 3157 1484 4641
0.94–0.97 491 110 35 636 1928 293 2221

0.97–1 600 198 44 842 1951 405 2356
1–1.03 698 184 29 911 1678 314 1992

1.03–1.06 590 131 21 742 1119 90 1209
> 1.06 1164 300 9 1473 1717 231 1948
Overall 4359 1119 205 5683 11550 2817 14367

Table 4.3: Number of SPX options in 2009 and 2010 in each moneyness-maturity bin.

2009 SPX index options 2010 SPX index options
< 60 60–180 > 180 Overall < 60 60–180 Overall

< 0.94 7.73 29.49 52.02 14.44 2.88 9.70 5.06
0.94–0.97 20.98 53.30 81.42 29.90 8.80 33.03 12.00

0.97–1 31.65 66.06 97.47 43.18 20.43 50.13 25.53
1–1.03 43.50 74.77 110.95 51.96 37.94 64.81 42.18

1.03–1.06 57.26 89.43 127.96 64.94 59.51 87.86 61.62
> 1.06 116.77 138.94 160.66 121.55 122.25 146.97 125.18
Overall 54.06 82.11 87.68 60.80 35.16 37.84 35.68

Table 4.4: Average SPX index option price in US dollars ($) ineach moneyness-maturity category
in 2009 and 2010 SPX.

67



In-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0939 0.1767 0.3272 0.2164 0.0865 0.1484 0.2638 0.1793 0.0726 0.1263 0.2874 0.1789

0.94–0.97 0.1503 0.2204 0.3175 0.2300 0.1440 0.2114 0.2799 0.2114 0.1114 0.1358 0.2788 0.1798
0.97–1 0.1762 0.2325 0.3078 0.2386 0.1720 0.2311 0.2838 0.2278 0.1257 0.1411 0.2945 0.1917
1–1.03 0.1910 0.2563 0.3057 0.2485 0.1863 0.2533 0.2937 0.2416 0.1222 0.1473 0.3181 0.1989

1.03–1.06 0.1919 0.2810 0.3070 0.2561 0.1787 0.2664 0.2969 0.2437 0.1089 0.1547 0.3066 0.1924
> 1.06 0.1440 0.3385 0.4005 0.3024 0.1236 0.2251 0.3296 0.2356 0.0631 0.1658 0.3653 0.2146
Overall 0.1431 0.2683 0.3559 0.2623 0.1302 0.2070 0.3000 0.2190 0.0834 0.1489 0.3258 0.1981

Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0961 0.1827 0.3340 0.2216 0.0887 0.1550 0.2711 0.1849 0.0777 0.1393 0.2991 0.1890

0.94–0.97 0.1532 0.2286 0.3255 0.2361 0.1468 0.2194 0.2881 0.2175 0.1195 0.1523 0.2900 0.1911
0.97–1 0.1791 0.2408 0.3158 0.2447 0.1750 0.2388 0.2924 0.2340 0.1352 0.1585 0.3074 0.2044
1–1.03 0.1928 0.2623 0.3150 0.2540 0.1882 0.2590 0.3023 0.2468 0.1318 0.1638 0.3285 0.2105

1.03–1.06 0.1929 0.2857 0.3162 0.2610 0.1802 0.2716 0.3065 0.2490 0.1182 0.1712 0.3189 0.2045
> 1.06 0.1439 0.3396 0.4044 0.3042 0.1245 0.2297 0.3373 0.2403 0.0667 0.1747 0.3753 0.2222
Overall 0.1443 0.2723 0.3619 0.2661 0.1319 0.2127 0.3079 0.2242 0.0892 0.1611 0.3367 0.2076

Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0539 0.0554 0.0502 0.0527 0.0336 0.0391 0.0381 0.0371 0.0483 0.0623 0.0640 0.0591

0.94–0.97 0.0547 0.0518 0.0727 0.0607 0.0475 0.0484 0.0445 0.0466 0.0700 0.0836 0.0782 0.0765
0.97–1 0.0603 0.0705 0.0915 0.0744 0.0521 0.0521 0.0470 0.0502 0.0753 0.0888 0.0802 0.0805
1–1.03 0.1117 0.1016 0.1081 0.1079 0.0536 0.0528 0.0491 0.0517 0.0732 0.0889 0.0835 0.0809

1.03–1.06 0.1933 0.1444 0.1341 0.1593 0.0529 0.0557 0.0525 0.0534 0.0654 0.0897 0.0847 0.0786
> 1.06 0.4178 0.3333 0.2485 0.3250 0.0378 0.0551 0.0562 0.0501 0.0366 0.0699 0.0772 0.0625
Overall 0.2278 0.1913 0.1537 0.1880 0.0415 0.0498 0.0490 0.0468 0.0510 0.0725 0.0747 0.0664

Table 4.5: All 118 LIFFE option symbols: from top to bottom, we present the in-sample, one day
out-of-sample, and out-of-sample hedging mean absolute erorrs in Euros (e), respectively.

In-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0684 0.1324 0.1880 0.1358 0.0634 0.1078 0.1494 0.1114 0.0421 0.0600 0.0820 0.0636

0.94–0.97 0.0936 0.1318 0.1605 0.1279 0.0903 0.1208 0.1407 0.1165 0.0567 0.0592 0.0824 0.0666
0.97–1 0.1029 0.1301 0.1624 0.1319 0.1001 0.1246 0.1497 0.1248 0.0600 0.0574 0.0896 0.0702
1–1.03 0.1035 0.1330 0.1554 0.1301 0.0999 0.1276 0.1476 0.1245 0.0559 0.0556 0.0893 0.0680

1.03–1.06 0.1054 0.1470 0.1576 0.1355 0.0971 0.1363 0.1502 0.1269 0.0500 0.0556 0.0886 0.0656
> 1.06 0.0843 0.1844 0.2030 0.1605 0.0700 0.1139 0.1606 0.1189 0.0320 0.0611 0.1028 0.0687
Overall 0.0852 0.1573 0.1879 0.1459 0.0763 0.1154 0.1540 0.1179 0.0418 0.0598 0.0930 0.0670

Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0705 0.1379 0.1934 0.1402 0.0656 0.1146 0.1555 0.1165 0.0471 0.0727 0.0919 0.0728

0.94–0.97 0.0962 0.1407 0.1661 0.1332 0.0929 0.1304 0.1470 0.1224 0.0643 0.0756 0.0933 0.0777
0.97–1 0.1055 0.1377 0.1682 0.1370 0.1028 0.1330 0.1561 0.1303 0.0680 0.0735 0.1010 0.0816
1–1.03 0.1059 0.1420 0.1630 0.1361 0.1024 0.1368 0.1547 0.1304 0.0647 0.0732 0.1002 0.0798

1.03–1.06 0.1067 0.1540 0.1644 0.1403 0.0990 0.1441 0.1572 0.1322 0.0588 0.0733 0.1001 0.0778
> 1.06 0.0845 0.1867 0.2053 0.1622 0.0713 0.1199 0.1652 0.1228 0.0356 0.0712 0.1110 0.0760
Overall 0.0866 0.1620 0.1921 0.1493 0.0782 0.1223 0.1596 0.1226 0.0472 0.0723 0.1024 0.0759

Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0382 0.0408 0.0355 0.0378 0.0267 0.0330 0.0258 0.0281 0.0351 0.0508 0.0432 0.0430

0.94–0.97 0.0361 0.0454 0.0578 0.0465 0.0343 0.0374 0.0288 0.0331 0.0472 0.0623 0.0502 0.0523
0.97–1 0.0448 0.0628 0.0705 0.0591 0.0366 0.0392 0.0311 0.0353 0.0493 0.0632 0.0518 0.0539
1–1.03 0.0740 0.0821 0.0796 0.0782 0.0363 0.0368 0.0295 0.0339 0.0470 0.0610 0.0505 0.0520

1.03–1.06 0.1191 0.1142 0.0934 0.1083 0.0360 0.0410 0.0305 0.0353 0.0447 0.0639 0.0506 0.0520
> 1.06 0.2657 0.2343 0.1485 0.2096 0.0266 0.0387 0.0318 0.0322 0.0260 0.0504 0.0464 0.0412
Overall 0.1476 0.1399 0.0980 0.1258 0.0294 0.0370 0.0296 0.0317 0.0348 0.0536 0.0466 0.0448

Table 4.6: 25 LIFFE option symbols with non-dividend payingunderlying: from top to bottom,
we present the in-sample, one day out-of-sample, and out-of-sample hedging mean absolute erorrs
in Euros (e), respectively.
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In-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.8066 1.2891 3.3626 1.0529 0.6531 1.1272 3.1615 0.8950 0.3827 0.4417 0.4571 0.3981

0.94–0.97 1.5875 1.5894 3.5900 1.6980 1.2043 1.2083 3.2579 1.3180 0.9695 0.7099 0.7592 0.9130
0.97–1 1.4227 1.4853 3.7589 1.5595 1.1894 1.1438 3.4583 1.2972 0.9834 0.7621 1.2557 0.9456
1–1.03 1.4231 1.5424 3.1430 1.5019 1.2005 1.2169 3.1522 1.2660 0.8087 0.7603 1.3450 0.8160

1.03–1.06 1.3544 1.8294 2.2189 1.4627 1.0814 1.3002 2.4501 1.1588 0.5964 0.6742 1.5565 0.6373
> 1.06 1.0156 1.3396 4.4884 1.1028 0.5414 0.9417 3.5248 0.6411 0.5892 0.4482 1.1743 0.5641
Overall 1.2080 1.4718 3.3877 1.3386 0.9048 1.1234 3.1834 1.0300 0.6838 0.6061 0.9498 0.6781

Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 1.0283 1.8973 3.3559 1.3307 0.9923 1.9481 3.0750 1.2952 1.1567 2.4181 2.6902 1.4810

0.94–0.97 1.9542 2.3008 4.2466 2.1403 1.7276 2.3129 3.8562 1.9460 2.0058 2.5075 2.6868 2.1301
0.97–1 1.7818 2.1510 4.4395 2.0075 1.6928 2.1234 4.1764 1.9238 1.9189 2.2149 3.0285 2.0465
1–1.03 1.7268 1.8951 4.0414 1.8345 1.6345 1.7578 4.1126 1.7383 1.6763 1.9303 3.3505 1.7809

1.03–1.06 1.6237 2.1759 3.6915 1.7820 1.5654 1.8046 4.1257 1.6818 1.4313 1.8417 3.0522 1.5514
> 1.06 1.1800 1.6689 3.9170 1.2961 1.2352 1.5369 3.3974 1.3095 1.1188 1.4671 4.6104 1.2100
Overall 1.4704 1.9532 3.8964 1.6536 1.4174 1.8569 3.7149 1.5874 1.4694 1.9887 2.9690 1.6264

Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 1.5960 1.6972 1.7254 1.6192 1.0208 1.5097 2.1006 1.1582 1.5538 3.0197 4.2792 1.9369

0.94–0.97 1.6073 1.4276 1.4424 1.5701 1.5660 1.8457 1.7572 1.6203 2.4214 3.8394 4.0458 2.7325
0.97–1 1.5668 1.4129 1.7418 1.5444 1.8276 1.7252 1.8811 1.8091 2.7939 3.4550 3.9352 2.9958
1–1.03 2.4576 1.8226 2.5395 2.3573 1.7119 1.8393 2.0883 1.7452 2.6189 3.6280 4.1940 2.8353

1.03–1.06 3.9381 2.6151 2.3725 3.7387 1.5337 1.4643 1.3571 1.5206 2.1383 2.7559 2.8632 2.2313
> 1.06 6.3086 4.5227 3.2818 5.9344 1.2601 1.2305 3.4344 1.2650 1.5567 1.8636 6.1118 1.6413
Overall 2.9351 2.3265 1.8930 2.7908 1.4548 1.5846 1.9519 1.4964 2.1303 3.0328 4.0640 2.3595

Table 4.7: SPX index options from 2009: from top to bottom, wepresent the in-sample, one day
out-of-sample, and out-of-sample hedging mean absolute erorrs in US Dollars ($), respectively.

In-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 Overall < 60 60–180 Overall < 60 60–180 Overall
< 0.94 2.4793 4.2638 3.0499 1.8093 3.1727 2.2453 0.7678 0.7232 0.7536

0.94–0.97 2.1529 1.3254 2.0437 1.5996 1.1367 1.5385 1.9971 1.3807 1.9158
0.97–1 1.5151 3.0341 1.7762 1.3373 2.8471 1.5968 3.3062 1.2439 2.9517
1–1.03 1.9801 5.6286 2.5552 1.6103 4.7825 2.1104 3.6362 1.2564 3.2611

1.03–1.06 2.9051 8.2283 3.3014 1.7680 6.3371 2.1081 3.3663 1.2077 3.2056
> 1.06 2.5464 9.5136 3.3726 1.8835 5.4483 2.3062 2.3409 1.6233 2.2558
Overall 2.2406 4.4907 2.6818 1.6727 3.3813 2.0077 2.3041 1.0152 2.0514

Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston

< 60 60–180 Overall < 60 60–180 Overall < 60 60–180 Overall
< 0.94 2.5247 4.6013 3.1887 2.0081 3.9160 2.6181 1.1167 1.6214 1.2780

0.94–0.97 2.5631 3.5518 2.6935 2.1082 3.3628 2.2737 2.5404 3.0072 2.6020
0.97–1 2.2363 4.2364 2.5801 2.0710 3.9689 2.3973 3.9287 2.7678 3.7291
1–1.03 2.3524 5.6459 2.8715 2.0468 4.6468 2.4566 4.2024 2.5562 3.9429

1.03–1.06 2.9328 9.0714 3.3898 1.9820 6.4140 2.3119 3.7052 2.7069 3.6309
> 1.06 2.5203 9.7335 3.3761 2.1347 5.8657 2.5774 2.4940 2.9696 2.5504
Overall 2.4963 5.1198 3.0107 2.0573 4.1872 2.4750 2.7332 2.1798 2.6247

Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston

< 60 60–180 Overall < 60 60–180 Overall < 60 60–180 Overall
< 0.94 1.6121 1.9310 1.7063 0.8483 1.2550 0.9684 1.1571 1.8352 1.3574

0.94–0.97 1.4957 1.5417 1.5005 1.0896 1.7307 1.1570 2.0851 3.6284 2.2474
0.97–1 1.2584 1.3563 1.2722 1.3459 1.9216 1.4272 2.7414 4.1820 2.9447
1–1.03 1.9874 1.4087 1.9101 1.4541 1.7795 1.4976 2.6213 3.6391 2.7572

1.03–1.06 3.9285 2.6833 3.8763 1.5916 1.7519 1.5983 2.3154 3.6511 2.3714
> 1.06 6.5603 4.8238 6.4119 1.6083 2.7452 1.7054 1.9719 4.2644 2.1679
Overall 2.2491 1.8759 2.1850 1.2223 1.5396 1.2768 2.0465 2.7290 2.1638

Table 4.8: SPX index options from 2010: from top to bottom, wepresent the in-sample, one day
out-of-sample, and out-of-sample hedging mean absolute erorrs in US Dollars ($), respectively.
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Figure 4.1: We plot the daily market hedging error against the corresponding date. In the first and
second panel, we plot the market hedging errors in Euros (e) for all 118 LIFFE option symbols
and 25 LIFFE option symbols with non dividend paying underlying respectively. In the bottom
two panels, we plot the market hedging errors in US Dollars ($) for SPX index options from 2009
and 2010 respectively.
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In-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0865 0.1484 0.2638 0.1793 0.0735 0.1219 0.2726 0.1716

0.94–0.97 0.1440 0.2114 0.2799 0.2114 0.1245 0.1723 0.2801 0.1943
0.97–1 0.1720 0.2311 0.2838 0.2278 0.1498 0.1908 0.2851 0.2098
1–1.03 0.1863 0.2533 0.2937 0.2416 0.1634 0.2135 0.2957 0.2235

1.03–1.06 0.1787 0.2664 0.2969 0.2437 0.1581 0.2291 0.2980 0.2268
> 1.06 0.1236 0.2251 0.3296 0.2356 0.1097 0.2008 0.3440 0.2303
Overall 0.1302 0.2070 0.3000 0.2190 0.1141 0.1782 0.3094 0.2096

Out-of-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0887 0.1550 0.2711 0.1849 0.0769 0.1316 0.2826 0.1796 0.0242 0.0335 0.0330 0.0306

0.94–0.97 0.1468 0.2194 0.2881 0.2175 0.1286 0.1838 0.2904 0.2026 0.0322 0.0417 0.0395 0.0373
0.97–1 0.1750 0.2388 0.2924 0.2340 0.1540 0.2011 0.2963 0.2180 0.0355 0.0448 0.0422 0.0403
1–1.03 0.1882 0.2590 0.3023 0.2468 0.1662 0.2214 0.3071 0.2306 0.0347 0.0452 0.0442 0.0407

1.03–1.06 0.1802 0.2716 0.3065 0.2490 0.1600 0.2359 0.3107 0.2338 0.0317 0.0449 0.0449 0.0398
> 1.06 0.1245 0.2297 0.3373 0.2403 0.1110 0.2067 0.3541 0.2365 0.0239 0.0437 0.0694 0.0478
Overall 0.1319 0.2127 0.3079 0.2242 0.1165 0.1860 0.3198 0.2166 0.0272 0.0409 0.0521 0.0409

Out-of-Sample Hedging Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0336 0.0391 0.0381 0.0371 0.0332 0.0392 0.0392 0.0375 0.0346 0.0389 0.0360 0.0364

0.94–0.97 0.0475 0.0484 0.0445 0.0466 0.0474 0.0486 0.0455 0.0470 0.0449 0.0469 0.0420 0.0443
0.97–1 0.0521 0.0521 0.0470 0.0502 0.0522 0.0523 0.0478 0.0506 0.0483 0.0500 0.0443 0.0472
1–1.03 0.0536 0.0528 0.0491 0.0517 0.0533 0.0529 0.0497 0.0519 0.0476 0.0507 0.0457 0.0477

1.03–1.06 0.0529 0.0557 0.0525 0.0534 0.0520 0.0554 0.0527 0.0531 0.0431 0.0494 0.0455 0.0455
> 1.06 0.0378 0.0551 0.0562 0.0501 0.0369 0.0542 0.0556 0.0494 0.0284 0.0405 0.0459 0.0388
Overall 0.0415 0.0498 0.0490 0.0468 0.0410 0.0495 0.0492 0.0466 0.0358 0.0423 0.0428 0.0403

Table 4.9: Comparison of three different regression procedures for the Markov tree model on 118
LIFFE option symbols: from top to bottom, we present the in-sample, one day out-of-sample, and
out-of-sample hedging mean absolute erorrs in euros (e), respectively.

In-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0634 0.1078 0.1494 0.1114 0.0545 0.0882 0.1569 0.1061

0.94–0.97 0.0903 0.1208 0.1407 0.1165 0.0775 0.0963 0.1427 0.1060
0.97–1 0.1001 0.1246 0.1497 0.1248 0.0860 0.0985 0.1567 0.1153
1–1.03 0.0999 0.1276 0.1476 0.1245 0.0858 0.1033 0.1515 0.1143

1.03–1.06 0.0971 0.1363 0.1502 0.1269 0.0840 0.1109 0.1532 0.1165
> 1.06 0.0700 0.1139 0.1606 0.1189 0.0607 0.0961 0.1668 0.1133
Overall 0.0763 0.1154 0.1540 0.1179 0.0659 0.0953 0.1601 0.1112

Out-of-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0656 0.1146 0.1555 0.1165 0.0574 0.0966 0.1647 0.1126 0.0186 0.0266 0.0220 0.0223

0.94–0.97 0.0929 0.1304 0.1470 0.1224 0.0810 0.1083 0.1491 0.1128 0.0225 0.0299 0.0247 0.0252
0.97–1 0.1028 0.1330 0.1561 0.1303 0.0896 0.1089 0.1637 0.1219 0.0244 0.0311 0.0251 0.0264
1–1.03 0.1024 0.1368 0.1547 0.1304 0.0894 0.1143 0.1594 0.1214 0.0236 0.0320 0.0252 0.0264

1.03–1.06 0.0990 0.1441 0.1572 0.1322 0.0864 0.1208 0.1612 0.1229 0.0220 0.0314 0.0251 0.0256
> 1.06 0.0713 0.1199 0.1652 0.1228 0.0625 0.1035 0.1724 0.1182 0.0161 0.0264 0.0238 0.0221
Overall 0.0782 0.1223 0.1596 0.1226 0.0684 0.1038 0.1667 0.1170 0.0189 0.0276 0.0236 0.0232

Out-of-Sample Hedging Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.0267 0.0330 0.0258 0.0281 0.0264 0.0330 0.0265 0.0283 0.0265 0.0315 0.0241 0.0270

0.94–0.97 0.0343 0.0374 0.0288 0.0331 0.0342 0.0374 0.0293 0.0333 0.0318 0.0355 0.0269 0.0310
0.97–1 0.0366 0.0392 0.0311 0.0353 0.0366 0.0393 0.0316 0.0354 0.0334 0.0356 0.0271 0.0316
1–1.03 0.0363 0.0368 0.0295 0.0339 0.0361 0.0367 0.0297 0.0339 0.0336 0.0381 0.0273 0.0324

1.03–1.06 0.0360 0.0410 0.0305 0.0353 0.0355 0.0408 0.0307 0.0352 0.0309 0.0359 0.0265 0.0306
> 1.06 0.0266 0.0387 0.0318 0.0322 0.0259 0.0380 0.0314 0.0316 0.0205 0.0294 0.0250 0.0248
Overall 0.0294 0.0370 0.0296 0.0317 0.0290 0.0367 0.0297 0.0315 0.0257 0.0317 0.0252 0.0272

Table 4.10: Comparison of three different regression procedures for the Markov tree model on 25
LIFFE option symbols with non-dividend paying underlying:from top to bottom, we present the
in-sample, one day out-of-sample, and out-of-sample hedging mean absolute erorrs in euros (e),
respectively.
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In-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.6531 1.1272 3.1615 0.8950 0.6076 1.1512 3.7982 0.9045

0.94–0.97 1.2043 1.2083 3.2579 1.3180 1.1659 1.1951 3.7680 1.3141
0.97–1 1.1894 1.1438 3.4583 1.2972 1.1216 1.1430 4.1478 1.2848
1–1.03 1.2005 1.2169 3.1522 1.2660 1.0907 1.1261 3.9542 1.1890

1.03–1.06 1.0814 1.3002 2.4501 1.1588 0.9630 1.2113 3.1659 1.0692
> 1.06 0.5414 0.9417 3.5248 0.6411 0.4576 1.0254 5.8086 0.6059
Overall 0.9048 1.1234 3.1834 1.0300 0.8267 1.1233 3.9136 0.9964

Out-of-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 0.9923 1.9481 3.0750 1.2952 0.9699 1.9284 3.5258 1.3027 0.7289 1.4535 1.8470 0.9067

0.94–0.97 1.7276 2.3129 3.8562 1.9460 1.7557 2.3093 4.4246 1.9983 1.1513 1.5673 1.7941 1.2470
0.97–1 1.6928 2.1234 4.1764 1.9238 1.7074 2.1721 4.8128 1.9790 1.1478 1.3820 1.3632 1.2071
1–1.03 1.6345 1.7578 4.1126 1.7383 1.6111 1.7243 4.8980 1.7389 1.1457 1.2469 1.6519 1.1784

1.03–1.06 1.5654 1.8046 4.1257 1.6818 1.5343 1.9275 4.8187 1.7028 1.0785 1.3287 1.3939 1.1183
> 1.06 1.2352 1.5369 3.3974 1.3095 1.1814 1.6359 3.7108 1.2851 0.9005 0.9412 2.4268 0.9175
Overall 1.4174 1.8569 3.7149 1.5874 1.3978 1.8976 4.3047 1.6019 1.0014 1.2913 1.6722 1.0756

Out-of-Sample Hedging Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 > 180 Overall < 60 60–180 > 180 Overall < 60 60–180 > 180 Overall
< 0.94 1.0208 1.5097 2.1006 1.1582 1.0213 1.5106 2.1209 1.1599 0.9814 1.5389 2.0052 1.1174

0.94–0.97 1.5660 1.8457 1.7572 1.6203 1.5755 1.8647 1.7848 1.6323 1.6725 1.7379 1.8819 1.6918
0.97–1 1.8276 1.7252 1.8811 1.8091 1.8346 1.7370 1.8993 1.8177 1.6571 1.4953 1.5277 1.6211
1–1.03 1.7119 1.8393 2.0883 1.7452 1.7155 1.8535 2.1170 1.7514 1.5463 1.2259 1.3636 1.4969

1.03–1.06 1.5337 1.4643 1.3571 1.5206 1.5061 1.4700 1.3488 1.4974 1.2811 1.3652 1.0848 1.2846
> 1.06 1.2601 1.2305 3.4344 1.2650 1.1600 1.2270 2.3251 1.1784 0.9971 1.0844 1.1629 1.0126
Overall 1.4548 1.5846 1.9519 1.4964 1.4372 1.5916 1.9423 1.4835 1.3278 1.4058 1.6783 1.3524

Table 4.11: Comparison of three different regression procedures for the Markov tree model on
2009 SPX index options: from top to bottom, we present the in-sample, one day out-of-sample,
and out-of-sample hedging mean absolute erorrs in US Dollars ($), respectively.

In-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 Overall < 60 60–180 Overall < 60 60–180 Overall
< 0.94 1.8093 3.1727 2.2453 1.5200 2.6941 1.8954

0.94–0.97 1.5996 1.1367 1.5385 1.1958 1.5735 1.2456
0.97–1 1.3373 2.8471 1.5968 1.2525 3.7508 1.6820
1–1.03 1.6103 4.7825 2.1104 1.8815 5.8175 2.5019

1.03–1.06 1.7680 6.3371 2.1081 2.0258 7.2277 2.4130
> 1.06 1.8835 5.4483 2.3062 1.9338 6.0313 2.4197
Overall 1.6727 3.3813 2.0077 1.5837 3.4962 1.9587

Out-of-Sample Pricing Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 Overall < 60 60–180 Overall < 60 60–180 Overall
< 0.94 2.0081 3.9160 2.6181 1.7537 3.5422 2.3256 0.4769 0.8814 0.5937

0.94–0.97 2.1082 3.3628 2.2737 1.8129 3.6109 2.0501 0.7766 1.4730 0.8478
0.97–1 2.0710 3.9689 2.3973 2.0111 4.7730 2.4859 1.0356 1.5060 1.1002
1–1.03 2.0468 4.6468 2.4566 2.2669 5.5526 2.7848 1.1075 1.3741 1.1403

1.03–1.06 1.9820 6.4140 2.3119 2.2277 7.2449 2.6012 1.0671 1.4748 1.0859
> 1.06 2.1347 5.8657 2.5774 2.2293 6.2374 2.7042 1.0882 1.9201 1.1545
Overall 2.0573 4.1872 2.4750 1.9981 4.2890 2.4474 0.8511 1.1511 0.9009

Out-of-Sample Hedging Errors
OverconstrainedL2 Pseudo-Huber UnderconstrainedL2

< 60 60–180 Overall < 60 60–180 Overall < 60 60–180 Overall
< 0.94 0.8483 1.2550 0.9684 0.8024 1.2060 0.9216 0.6159 0.9517 0.7065

0.94–0.97 1.0896 1.7307 1.1570 1.0639 1.7000 1.1308 0.9466 1.4735 0.9919
0.97–1 1.3459 1.9216 1.4272 1.3324 1.9071 1.4135 1.1796 1.5360 1.2227
1–1.03 1.4541 1.7795 1.4976 1.4537 1.7812 1.4975 1.1644 1.2645 1.1742

1.03–1.06 1.5916 1.7519 1.5983 1.6123 1.7623 1.6186 1.0635 1.2231 1.0686
> 1.06 1.6083 2.7452 1.7054 1.6270 2.7796 1.7256 1.0783 1.8883 1.1236
Overall 1.2223 1.5396 1.2768 1.2055 1.5083 1.2575 0.9572 1.1610 0.9872

Table 4.12: Comparison of three different regression procedures for the Markov tree model on
2010 SPX index options: from top to bottom, we present the in-sample, one day out-of-sample,
and out-of-sample hedging mean absolute erorrs in US Dollars ($), respectively.
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λ ᾱ µ σ γ
2009 -0.4022 0.5242 -0.0803 1.4903 0.0980
2010 1.2218 0.3808 -1.8850 2.442 1.4059

Table 4.13: Best fit GHD parameters on errors from 2009 and 2010.
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Figure 4.2: 2009 and 2010 in-sample error distribution using KDE and best fit GHD
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Figure 4.3: KDE of 2009 and 2010|HSV| − |HMT|

10% 20% 30% 40% 50% 60% 70% 80% 90%
2009 -0.2888 -0.0357 0.0651 0.2879 0.5720 0.8463 1.1781 1.5894 2.4213
2010 -0.2008 -0.0066 0.0578 0.1768 0.3679 0.6658 1.0401 1.6276 2.8967

Table 4.14: Deciles of|HSV| − |HMT| for 2009 and 2010.
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Chapter 5

Generalization of the Markov Tree Process

Noise and time delays are key features of models of human balance (Ohira and Milton, 1995;
Milton, 2011), circadian oscillators (Smolen et al., 2002), gene regulation dynamics (Bratsun et al.,
2005; Josic et al., 2011), cortical interneuron migration (Tanaka et al., 2009), and resting brain
dynamics (Deco et al., 2009, 2010). Despite the success of spectral methods in other stochastic
contexts (Bhattacharya and Waymire, 2009; Mugler et al., 2009), delayed stochastic systems are
typically not treated using spectral methods (Longtin, 2010).

In this Chapter, we present a spectral numerical method to calculate the probability density
function (pdf) for the delayed random walk that is obtained by applying the weak Euler-Maruyama
discretization to a class of stochastic delay differentialequations (SDDE). We refer to the method
as a spectral method because it involves solving the problemin Fourier space, and then using the
inverse FFT (fast Fourier transform) to compute the solution in physical space. This method is fast,
exact (to machine precision) and generalizable to other, more complicated systems.

5.1 Introduction

Consider the SDDE
dYt = φ(Yt − Yt−ℓdt)dt+ γ(Yt − Yt−ℓdt)dWt (5.1)

with initial conditionsY (t) = θ(t) for t ∈ [0, ℓdt]. Hereℓ is the integer delay (lag),Wt is the
standard Wiener process, andφ andγ are measurable functions subject to the condition that when
γ ≡ 0, the resulting deterministic equation has a stable fixed point.

To obtain the pdf of a stochastic differential equation (with no delay) at timet > 0, a natural
approach is to solve the associated Fokker-Planck equation. For an SDDE, however, the delayed
Fokker-Planck equation is circular (Longtin, 2010) and cannot be solved using standard numerical
methods (Frank, 2005b). For this reason, past studies have applied asymptotic and perturbative
methods to extract useful information from delayed Fokker-Planck equations (Guillouzic et al.,
1999; Frank, 2005b,a; Galla, 2009). Such methods break downwhen the noise term is multiplied
by a function of the delayed solution, or when the delay is large.

The technique employed in this Chapter is fundamentally different from the Fokker-Planck
approach. We use a standard stochastic numerical method to discretize (5.1) in time and space.
This discretization, together with piecewise constant approximation of the functionsφ andγ, yields
a delayed random walk approximation (5.4) of the original SDDE, the pdf of which is then com-
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puted using a fast and accurate spectral method.
An important reason for taking this approach is that delayedrandom walks can often be

solved exactly (Ohira and Milton, 2009). Prior delayed random walk approximations to SDDE
(Ohira and Yamane, 2000; Ohira and Milton, 2009) feature a V-shaped potential such that the
walker’s probabilities of right/left movements are spatially dependent. The equivalence between
the Fokker-Planck equations for this delayed random walk and the original SDDE has been demon-
strated (Ohira and Milton, 2009), generalizing ideas of Ehrenfest and Kac.

Instead of using a spatially dependent potential, the delayed random walk approximation
(5.4) allows for non-uniformity of both the sizesK±

r and probabilities{qr, 1 − qr} of the in-
crements; throughr, these quantities also have a piecewise constant dependence on space. This
(piecewise) spatial homogeneity allows us to rewrite the system as a recursion that can be solved
using spatial Fourier transforms. We view (5.6) as a discrete equation for the approximate time-
evolution of the pdf of (5.1). Note that (5.6) differs both inderivation and solution from Fokker-
Planck equations for SDDE (Guillouzic et al., 1999; Frank, 2005b,a; Galla, 2009).

5.2 Delayed Random Walk

We discretize SDDE (5.1) using the weak Euler-Maruyama scheme (Higham, 2001) to obtain

Yn+1 = Yn + φ(Yn − Yn−ℓ)∆t+ γ(Yn − Yn−ℓ)
√
∆tZ, (5.2)

whereZ is a Bernoulli random variable that takes values{−1, 1} with equal probabilities. The
initial conditions given after (5.1) yield initial conditions for (5.2):Yj = θ(jdt) for j = 0, 1, . . . , ℓ.
Let IA denote the indicator function on the setA. We use

φ(x) ≈
R∑

r=1

µrI[cr,cr+1)(x), γ(x) ≈
R∑

r=1

σrI[cr,cr+1)(x),

piecewise constant approximations with constantµr andσr, and substitute back into (5.2) to obtain

Yn+1 = Yn + µr∆t+ σr
√
∆tZ, cr ≤ Yn − Yn−ℓ < cr+1. (5.3)

We rewrite (5.3) as the delayed random walk

Yn+1 = Yn +Kn,

Kn = Kr
n if cr ≤ Yn − Yn−ℓ < cr+1, (5.4)

whereKr
n is a Bernoulli random variable that takes values{K+

r , K
−
r } with probabilities{qr, 1−qr}

respectively. We choose{K+
r , K

−
r , qr} such that the moments ofKr

n match those ofµr∆t +
σr
√
∆tZ 1. The delayed random walk (5.4) has not been considered in theliterature, to the best of

our knowledge. This random walk is more general than exactlysolvable delayed and/or persistent
random walks in the literature (Berrones and Larralde, 2001;Weiss, 2002; Rudnick and Gaspari,
2004; Van der Straeten and Naudts, 2006; Garcı́a-Pelayo, 2007; Bhat and Kumar, 2012).

1For the purposes of approximating the weak EM scheme of the SDDE, we setKr

n
= µr∆t+ σr

√
∆tZ.
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5.3 Spectral Method

Let Ω = {K+
r , K

−
r }Rr=1 and letαj be the outcome of the random variableKn−j+1. Applying

Bayes’ theorem recursively to (5.4), we get

P (Yn+1 = s ∩Kn = α1 ∩ · · · ∩Kn−ℓ+1 = αℓ)

=
∑

αℓ+1∈Ω
P (Yn = s− α1 ∩Kn−1 = α2 ∩ · · · ∩Kn−ℓ = αℓ+1)

× P (Kn = α1|Kn−1 = α2 ∩ · · · ∩Kn−ℓ = αℓ+1). (5.5)

Denote the left-hand side asT n+1
s (αℓ

1) and the conditional probability asp(αℓ+1
1 ). Then

T n+1
s (αℓ

1) =
∑

αℓ+1∈Ω
T n
s−α1

(αℓ+1
2 )p(αℓ+1

1 ). (5.6)

Taking the Fourier transform ins yields the linear system

T̂ n+1
k (αℓ

1) =
∑

αℓ+1∈Ω
T̂ n
k (α

ℓ+1
2 ) p(αℓ+1

1 )e−i2πkα1

︸ ︷︷ ︸
M

(5.7)

in k space, wherêT n+1
k (αℓ

1) denotes the Fourier transform of the probability of reaching s by taking
a sequence of stepsαℓ, . . . , α1 in the previousℓ steps. In (5.7), we useM to denote the(2R)ℓ ×
(2R)ℓ matrix that gives the probability of transitioning from a sequence of states(αℓ+1, . . . , α2)
to the sequence(αℓ, . . . , α1). Sparsity ofM follows easily: since each Bernoulli random variable
has only two outcomes, there are exactly two non-zero entries in every column ofM for a total
of 2 × (2R)ℓ non-zero entries. From (5.7) we havev̂n+1 = Mv̂n, which impliesv̂n = Mn−2ℓv̂2ℓ,
wherev̂n is a (2R)ℓ × 1 vector with each component representingT̂ n

k (αℓ, . . . , α1). Let f(n, s)
denote the pdf of the delayed random walk (5.4) at time stepn, and letf̂(n, k) denote its Fourier
transform withk as the variable that is Fourier conjugate tos. Then, based on the above, we have
derived the solution in Fourier space:

f̂(n, k) = 1TMn−2ℓv̂2ℓ. (5.8)

To compute the initial condition̂v2ℓ, we require two steps. First, we use the initial condition
Y0, . . . , Yℓ in the modified tree method (described below) to compute the exact pdf ofY2ℓ, the
solution of (5.4) at timen = 2ℓ. Next, we set̂v2ℓ equal to the Fourier transform in space of the
pdf of Y2ℓ. In this way, the spectral method handles any initial conditions {Yj}0≤j≤ℓ consisting
of discrete random variables. This includes, for example, any set of constant initial conditions for
(5.4), and therefore any piecewise constant initial function θ(t) for (5.1).

What remains is to recoverf(n, s) from f̂(n, k). Since the walk is discrete in space,f(n, s)
is a linear combination of Dirac delta functions,

f(n, s) =
∑

m∈N
fmδ(s− sm), (5.9)
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wheresm takes specific values ins space depending on the parameters in the setΩ andN =
{−N/2,−N/2 + 1, . . . , N/2 − 1}. The presence of the Dirac deltas is a reason to avoid naı̈ve
Fourier inversion of̂f(n, k). Here, note thatf is determined completely by the set{(fm, sm)}m∈N :
it is this set we will solve for.

With f represented by (5.9), its Fourier transform isf̂(n, k) =
∑

m∈N fme
−i2πksm . We

samplef̂(n, k) at discrete values ofk given bykj = j∆k for all j ∈ N :

f̂(n, kj) =
∑

m∈N
fme

−i2πj∆ksm . (5.10)

Let δ̂ denote the Kronecker delta, and assume that∆k∆s = 1/N . Then the inverse FFT of (5.10)
is

f(n, sr) =
1

N

∑

j∈N

∑

m∈N
fme

−i2πj∆ksmei2πj∆ksr

=
1

N

∑

m∈N
fm
∑

j∈N
ei2πj∆k(r−m)∆s

=
1

N

∑

m∈N
fmNδ̂(r −m) = fr.

The spectral method can now be summarized. In the first step, we compute (5.8), the exact solution
in Fourier space, but sampled only at discrete values ofk given bykj = j∆k for all j ∈ N . In the
second step, we compute the IFFT of this sampled Fourier transform at allsm such thatm ∈ N .
As shown, this yields the exact weightfm corresponding to the spatial locationsm, meaning that
we can indeed recover the set{(fm, sm)}m∈N that determines (5.9) exactly. We denote the solution
produced by the spectral method asfIFFT(n, s). The only source of error betweenfIFFT(n, s) and
the exact pdff(n, s) is due to the inaccuracy in the IFFT algorithm itself (Briggs and Henson,
1995).

Note that the first step requires computing the matrix-vector productn times to obtain the
Fourier transform atN different points ink space, while the second step consists entirely of the
IFFT. The total complexity of the spectral method is thusN(2R)ℓn + N logN ∼ O(n2), lower
than the tree-based method described below.

Choosing∆s and ∆k. Since the parameters inΩ are not necessarily equal, we have a pdf
overs space with non-uniform spacing. We first convert this non-uniform grid into a uniform grid
in order to use the IFFT. Let{K±

r }Rr=1 be rationals such thatL is the least common multiple (LCM)
of their denominators. Since the random walker changes its position by an element of{K±

r }Rr=1 at
every step, the minimum non-zero distance between two sitesthat the random walker can occupy
is given by∆s = 1/L. The maximum and minimums values that can be reached by the random
walker at any stepn are, respectively,Smax = n max{K±

r }Rr=1 andSmin = n min{K±
r }Rr=1. This

also implies that we have to calculate the pdf atN = (Smax − Smin)/∆s ∼ O(nL) number of
grid points. SinceL is a constant given the parameters, we getN ∼ O(n), wheren is the number
of steps taken by the random walker. Finally, using∆k∆s = 1/N , we get∆k = 1/(N∆s) =
L/N . Note that the parameters in the setΩ can be approximated such thatL is small. This leads
to incurring a relatively small error in calculating the pdf, while increasing the efficiency of the
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Figure 5.1: Snapshots at different values of timen show machine precision agreement between the
densities computed using the spectral method (each plottedwith a different marker) and an enu-
merative exact method (each plotted using the same grayscale/color as the corresponding marker).
Computed densities are for the random walk (5.4) with delayℓ = 5 and two types of Bernoulli
stepsKn: outcomes{2,−2} with probabilities{0.7, 0.3} whenYn ≥ Yn−5, and outcomes{1,−1}
with probabilities{0.9, 0.1} whenYn < Yn−5. Initial conditions wereYn = 0 for n ≤ ℓ.

algorithm.

5.4 Modified Tree Method

For the delayed random walk (5.4), we have also developed an enumerative method for computing
the exact pdf. This modified tree method involves growing a tree of all allowed paths/probabilities
of the random walker. In previous work (Bhat and Kumar, 2012),the authors explained how to
do this whenℓ = 1. For ℓ > 1, we modify the old procedure, leveraging the rationality ofthe
increments of (5.4). Given the pdf at any stepm consisting ofO(m) distinct states, computing
the pdf at stepm + 1 using the tree method requires three steps: (i) calculatingall possible states
at stepm + 1, (ii) tracking the history and the region in which each of these states lie, and (iii)
checking for recombinations to obtain the pdf at stepm+1. Step (i) requires2m operations, while
(ii) requires(2R)ℓ operations per state. Step (iii) requires finding unique states with the same
history and summing the probabilities in each of these unique states. The overall complexity is
then

∑n

m=1(2m)(2R)ℓ +m2(2R)ℓ ∼ O(n3). In this work, we use this method for two purposes:
to computêv2ℓ for (5.8), and to compute exact reference solutions againstwhich we compare the
spectral method.

5.5 Results

For both Fig. 5.1 and Fig. 5.2, we plot in solid lines (respectively, solid markers in the same
grayscale/color) the pdf calculated by growing the tree (respectively, the spectral method). In
these figures, different grayscales/colors and markers areused for different values ofn and ℓ,
respectively. The solid markers lie exactly on the solid curves, demonstrating the accuracy of the
spectral method. In Fig. 5.3, we plot‖fIFFT(n, s)− f(n, s)‖∞ both for different numbers of steps
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Figure 5.2: For different delaysℓ, densities computed at timen = 60 using the spectral method
(plotted using solid markers) agree to machine precision with densities computed using an enu-
merative exact method (plotted using lines of the same grayscales/colors as markers). Computed
densities are for five different versions of the random walk (5.4), each with a different delay
ℓ ∈ {1, 2, 3, 4, 5}. The Bernoulli stepsKn were as follows: outcomes{1,−1} with probabilities
{0.3, 0.7} whenYn ≥ Yn−ℓ, and outcomes{2,−2} with probabilities{0.9, 0.1} whenYn < Yn−ℓ.
Initial conditions wereYn = 0 for n ≤ ℓ.

n (in solid squares) and different delaysℓ (in solid circles). All plots confirm the spectral method’s
accuracy up to machine precision. To obtain the pdf atn = 80 in Fig. 5.1, the modified tree
method takes 1390.8 s and the spectral method takes 0.67 s. Toobtain the pdf forℓ = 1 in Fig. 5.2,
the tree method from (Bhat and Kumar, 2012) takes 0.09 s, the modified tree method takes 0.29 s,
and the spectral method takes 0.09 s. All simulations were done using Matlab on an 8-core Intel i7
CPU. All codes used to produce the results in the Chapter are available for download2. In all the
experiments reported in Fig. 5.1 and Fig. 5.2, the spectral method is the fastest. Note that all of
these results use the initial conditionsYj ≡ 0 for 0 ≤ j ≤ ℓ.

Next, we apply the spectral method to the SDDE

dYt = tanh(Yt − Yt−3dt)dt+ dWt, (5.11)

subject to deterministic initial conditionsθ(t) = 0 for t ≤ 3dt. Approximatingtanh(x) by∑R

r=1 µrI[cr,cr+1)(x) and applying the weak Euler-Maruyama discretization, we get (5.3) with
σr = 1 for all r, ℓ = 3 andYn = 0 for n ≤ ℓ. The error in the cumulative distribution function (cdf)
calculated using the spectral method depends on the parametersR, cr, µr used to approximate the
tanh function; for the results shown in Fig. 5.4, these parameters’ exact values are given in our
Matlab code3

Setting∆t = 0.04 and∆s = 0.01 for both theR = 3 andR = 5 approximations, we
compare their accuracies in Fig. 5.4. In the top pane, we firstplot in solid gray the empirical cdf
obtained atT = 2 (∆t = 0.04) by simulatingM = 108 sample paths of the Euler-Maruyama
discretization of (5.11)—this Monte Carlo (MC) run was performed purely to give a reference
solution against which we compare the spectral method’s solutions. In the same pane, we plot

2 http://faculty.ucmerced.edu/hbhat/codes/ssdrw.tar.gz Refer to the README file for details.
3 http://faculty.ucmerced.edu/hbhat/codes/ssdrw.tar.gz
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Figure 5.3: Infinity norm errors‖fIFFT(n, s)− f(n, s)‖∞ between the spectral and exact pdfs are
at the level of machine precision, both as a function of timen and delayℓ. Each solid square, one
per value of time stepn, corresponds to the‖ · ‖∞ error between the solid markers (spectral) and
lines (exact) in Fig. 5.1. Each solid circle, one per value ofdelayℓ, corresponds to the‖ · ‖∞ error
between the solid markers (spectral) and lines (exact) in Fig. 5.2. All parameters are as in Fig.
5.1-5.2, respectively.

cdfs from spectral method simulations in dot-dashed gray (R = 3 approximation) and solid black
(R = 5 approximation). In the bottom pane of Fig. 5.4, we plot the error between the MC cdf and
the spectral method’s cdfs in dot-dashed gray (R = 3) and solid black (R = 5). The maxima of the
errors for theR = 3 andR = 5 approximations are, respectively,0.0727 and0.0337. The times
taken to obtain the cdf through MC and the spectral method withR = 3 andR = 5 are 288.28 s,
0.56 s and 19.13 s, respectively. If we assume that the MC run is sufficiently fine-scale as to be
close to the exact solution, these results suggest that the approximate solution will converge to the
exact solution of the SDDE, as we increaseR. We leave for future work a detailed discussion of
convergence and optimal step function approximation.

In this Chapter, we have developed a spectral method to obtainthe pdf of a delayed random
walk that is both fast and accurate. As demonstrated, this method also shows promise to solve
nonlinear SDDE. In future work, we plan to extend the spectral method to solve second-order
and/or oscillatory SDDE (Kim et al., 1999; Barrio et al., 2006).
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Figure 5.4: For the nonlinear SDDE (5.11), the accuracy of the cdf computed via the spectral
method increases as we increase the number of piecewise constant branchesR used to approximate
thetanh function. In the top pane, we plot in solid gray a fine-scale reference cdf obtained through
Monte Carlo (MC) simulation with∆t = 0.04 and108 sample paths. In dot-dashed gray and solid
black, we plot the cdfs obtained using the spectral method withR = 3 andR = 5 approximations,
respectively. In the bottom pane, we plot the pointwise errors between the spectral method cdfs
and the MC cdf. The maximum error decreases from0.0727 to 0.0337 as we go fromR = 3 to
R = 5. All plots are at timet = 2 for zero initial conditions.
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Csisźar, I. (2002). Large-scale typicality of Markov sample paths and consistency of MDL order
estimators.IEEE Transactions on Information Theory, 48(6):1616–1628.

D’Amico, G., Janssen, J., and Manca, R. (2009). European and American options: The semi-
Markov case.Physica A, 388(15-16):3181–3194.

Deco, G., Jirsa, V., and McIntosh, A. R. (2010). Emerging concepts for the dynamical organization
of resting-state activity in the brain.Nature Reviews Neuroscience, 12(1):43–56.

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and Kötter, R. (2009). Key role of coupling,
delay, and noise in resting brain fluctuations.Proceedings of the National Academy of Sciences,
106(25):10302–10307.

Ding, Z., Granger, C. W. J., and Engle, R. F. (1993). A long memory property of stock market
returns and a new model.Journal of Empirical Finance, 1:83–186.

Duan, J. C. and Simonato, J. G. (2001). American option pricing under GARCH by a Markov
chain approximation.Journal of Economic Dynamics and Control, 25:1689–1718.

Eberlein, E. and Keller, U. (1995). Hyperbolic distributions in finance.Bernoulli, 1(3):281–299.

Fama, E. F. (1970). Efficient capital markets—A review of theory and empirical work.Journal of
Finance, 25(2):383–423.

Fielitz, B. D. (1975). On the stationarity of transition probability matrices of common stocks.The
Journal of Financial and Quantitative Analysis, 10(2):327–339.

Fielitz, B. D. and Bhargava, T. N. (1973). The behavior of stock-price relatives—A Markovian
analysis.Operations Research, 21(6):1183–1199.

Fiorentini, G., Leon, A., and Rubio, G. (2002). Estimation and empirical performance of Heston’s
stochastic volatility model: the case of a thinly traded market. Journal of Empirical Finance,
9(2):225–255.

Florescu, I. and Viens, F. G. (2008). Stochastic volatility: option pricing using a multinomial
recombining tree.Applied Mathematical Finance, 15(2):151–181.

Frank, T. D. (2005a). Delay fokker-planck equations, novikov’s theorem, and boltzmann distribu-
tions as small delay approximations.Physical Review E, 72:011112.

Frank, T. D. (2005b). Delay Fokker-planck equations, perturbation theory, and data analysis for
nonlinear stochastic systems with time delays.Physical Review E, 71(3):031106.

French, K. R. and Roll, R. (1986). Stock return variances: The arrival of information and the
reaction of traders.Journal of Financial Economics, 17(1):5–26.

Friesen, G. C., Zhang, Y., and Zorn, T. S. (2012). Heterogeneous beliefs and risk-neutral skewness.
Journal of Financial and Quantitative Analysis, 47:851–872.

85



Gabriel, K. R. and Neumann, J. (1962). A Markov chain model fordaily rainfall occurrence at
Tel-Aviv. Quarterly Journal of the Royal Meteorological Society, 88:90–95.

Galla, T. (2009). Intrinsic fluctuations in stochastic delay systems: theoretical description and
application to a simple model of gene regulation.Physical Review E, 80(2):021909.

Garcia, R., Ghysels, E., and Renault, E. (2003). The econometrics of option pricing.Available at
SSRN 463860.
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Appendix A

Maximum Likelihood Estimation in
Markov Chains

A.1 MLE’s for k-th order Markov chain with Q symbols

Assume that we have a sequence{X1, . . . , XN} generated by ak-th order Markov chain where
every experiment hasQ possible outcomes.

Assume that eachXj takes values from a set{Am}Qm=1 of Q distinct symbols. For ak-th
order Markov chain,Xj depends onk outcomes prior to thej-th outcome. As in the earlier case
with two possible outcomes, here also the Markov property kicks in only if j > k. Let Si be
a subsequence ofk outcomes prior to thej-th outcome. Since each of thesek outcomes in the
subsequence is drawn from the set{Am}Qm=1, there areQk possible subsequencesSi. Let these
sequences be denoted by{Si}Q

k

i=1. Let us scan the given sequence{Xj}Nj=1 from left to right and
record the followingQk+1 numbers:

{{nSiAm
= # of times we observe “SiAm”}Qm=1}Q

k

i=1

Form = 1 to m = Q − 1, let pSiAm
= P (Am|Si). Let pSiAQ

= P (AQ|Si) = 1 −∑Q−1
m=1 pSiAm

andpk = P ({Xj}kj=1). In words,pk is the probability of observing the firstk terms of the{Xj}Nj=1

sequence. Putting everything together, the log likelihoodfor the whole sequence is

L = log pk +

Qk∑

i=1

[
Q−1∑

m=1

nSiAm
log(pSiAm

)

]
+

Qk∑

i=1

nSiAQ
log

(
1−

Q−1∑

m=1

pSiAm

)
.

Let us maximizeL over allpSiAm
. Taking partial derivatives of both sides with respect topSiAm

for one particular(m, i), we get

1

L

∂L

∂pSiAm

=
nSiAm

pSiAm

− nSiAQ

1−∑Q−1
m=1 pSiAm

.
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Setting∂L/∂pSiAm
= 0 to maximizeL, we get

nSiAm

pSiAm

=
nSiAQ

1−∑Q−1
m=1 pSiAm

. (A.1)

Note that for a particular value ofi, the above equation represents a set ofQ − 1 linear equations
in Q− 1 unknowns (the probabilities to be estimated), which give usthe following result:

nSiA1

pSiA1

=
nSiA2

pSiA2

= ... =
nSiAQ−1

pSiAQ−1

=
nSiAQ

1−∑Q−1
m=1 pSiAm

. (A.2)

Solving the linear system given by (A.1) and (A.2), we get theMLE for the transition probability:

p̂SiAm
=

nSiAm∑Q

m=1 nSiAm

.

We can then use the collection of allp̂’s to find the maximum value of the log likelihoodL.
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Appendix B

Expressions in the Markov Tree model

B.1 Expressions forµ1,2 and σ1,2
All parameters required to compute the MT price given by equation (4.10) depend on three unob-
servable parametersσ, σ+ andσ− throughµ1,2 andσ1,2.

µ1 = −l0 +
l1(q1 − 1)(q−1 + q1) + l−1(q−1(q−1 − 3q1 + 3) + q1 − 1)

(q−1 − q1 + 1)2

+
(n− 1)(l1q−1(1− 2q1) + l−1(2q−1 − 1)(q1 − 1))

q−1 − q1 + 1
,

σ2
1 = −(n− 1)q−1(q1 − 1)

[
q1
(
l21(4q−1(q−1 + 2)− 3)− 2l1l−1(4q−1(q−1 + 2)− 9) + l2−1(4q−1(q−1 + 2)− 11)

)

− 4(q−1 − 1)q1
2(l1 − l−1)

2 − (q−1 − 1)(l1 − 3l−1)
2

]
(q−1 − q1 + 1)−3

− (q1 − 1)

[
l21
(
q−1

3 + q−1
2(2q1 − 1) + q−1(q1(9q1 − 8) + 1) + (q1 − 1)q1

)

− 2l1l−1

(
q−1

3 + q−1
2(6q1 − 5) + q−1(5(q1 − 2)q1 + 3)− q1

2 + q1
)

+ l2−1

(
q−1

3 + q−1
2(10q1 − 13) + q−1((q1 − 12)q1 + 13) + (q1 − 1)q1

)]
(q−1 − q1 + 1)−4

µ2 = l0 +
l1 (q−1(3q1 − 2)− (q1 − 1)2)− l−1q−1(q−1 + q1 − 2)

(q−1 − q1 + 1)2

+
(n− 1)(l1q−1(1− 2q1) + l−1(2q−1 − 1)(q1 − 1))

q−1 − q1 + 1
,

σ2
2 = −(n− 1)q−1(q1 − 1)

[
q1
(
l21(4q−1(q−1 + 2)− 3)− 2l1l−1(4q−1(q−1 + 2)− 9) + l2−1(4q−1(q−1 + 2)− 11)

)

− 4(q−1 − 1)q1
2(l1 − l−1)

2 − (q−1 − 1)(l1 − 3l−1)
2

]
(q−1 − q1 + 1)−3

− q−1

[
l21
(
q−1

2(q1 − 2) + q−1(10(q1 − 1)q1 + 1) + q1
3 − q1

)

− 2l1l−1

(
q−1

2(5q1 − 4) + q−1(6(q1 − 2)q1 + 5) + (q1 − 3)(q1 − 1)q1
)

+ l2−1

(
q−1

2(9q1 − 10) + q−1(2(q1 − 7)q1 + 13) + (q1 − 1)((q1 − 3)q1 + 4)
)]
(q−1 − q1 + 1)−4
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where

l1 = σ+
√
∆t, l−1 = σ−√∆t, l0 = σ

√
∆t

qk =
er∆t − e−lk

elk − e−lk
, for k ∈ {−1, 0, 1}

and∆t = T/N whereT is the time in years to expiry andN is the number of steps in the MT.

B.2 Gradient vector for the MT objective function.

For an option with strikeK and time to expirationT , the error between the MT price and the
market price is

ǫ = V K,T
Θ − FMT(x,βMT)

whereV K,T
Θ is the market price of the option,FMT(x,βMT) is the MT model price, andβMT =

(σ, σ+, σ−). From the above equation, we get

∂ǫ

∂σ
= −∂F

MT(x,βMT)

∂σ
,

∂ǫ

∂σ± = −∂F
MT(x,βMT)

∂σ± .

Using (4.10), we expressFMT(x,βMT) as

FMT(x,βMT)erT = q0f1(µ1, σ1) + (1− q0)f2(µ2, σ2), (B.1)

where

fi(µi, σi) = S0 exp

(
σ2
i

2
+ µi

)
Φ(xi)−KΦ(xi+2),

andx1, . . . , x4 are given in (4.11) andµ1, µ2, σ1, σ2 are given in Appendix B.1.
Partial with respect to first parameter ∂FMT/∂σ. To calculate∂ǫm/∂σ, we first need to

calculate∂FMT/∂σ:

erT
∂FMT

∂σ
= q0

(
∂f1
∂σ

− ∂f2
∂σ

)
+
∂q0
∂σ

(f1 − f2) +
∂f2
∂σ

∂q0
∂σ

= −
√
∆teσ

√
∆t

(
er∆t − 2eσ

√
∆t + er∆t+2σ

√
∆t

(e2σ
√
∆t − 1)2

)

∂fi
∂σ

= S0 exp

(
σ2
i

2
+ µi

)(
N(xi)

∂xi
∂σ

+

(
1

2

∂σ2
i

∂σ
+
∂µi

∂σ

)
Φ(xi)

)
−KN(xi+2)

∂xi+2

∂σ
.

From the definition ofxi’s in section 4.2.3, we get

∂x1
∂σ

=
∂x3
∂σ

=
1

σ1

∂µ1

∂σ
, and

∂x2
∂σ

=
∂x4
∂σ

=
1

σ2

∂µ2

∂σ
,
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and from the expressions forµ1,2 andσ2
1,2, we know that

∂σ2
1,2

∂σ
= 0,

∂µ1

∂σ
=

√
dt,

∂µ2

∂σ
= −

√
dt.

Partial with respect to second and third parameters∂FMT/∂σ±. We now move on to
calculating∂ǫm/∂σ± for which we first need to calculate∂FMT/∂σ±. We get

erT
∂FMT

∂σ± = q0

(
∂f1
∂σ± − ∂f2

∂σ±

)
+
∂q0
∂σ± (f1 − f2) +

∂f2
∂σ± ,

where∂q0/∂σ± = 0. The above expressions consists of the terms∂f1/∂σ
± and∂f2/∂σ± that can

in turn be expressed as

∂fi
∂σ± = S0 exp

(
σ2
i

2
+ µi

)(
N(xi)

∂xi
∂σ± +

(
1

2

∂σ2
i

∂σ± +
∂µi

∂σ±

)
Φ(xi)

)
−KN(xi+2)

∂xi+2

∂σ± .

For i = {1, 2}, ∂xi/∂σ± is
∂xi
∂σ± =

∂xi+2

∂σ± +
1

2σi

∂σ2
i

∂σ±

and∂x3,4/∂σ± are

∂xi+2

∂σ± = − 1

2σ3
i

µi

∂σ2
i

∂σ± +
1

σi

∂µi

∂σ± − 1

2σ3
i

log

(
S0

X

)
,

whereX is the strike price of the option. To evaluate the above expression, we need the partials of
µ1,2 andσ2

1,2 with respect toσ±.

∂µ1,2

∂σ+
=
∂µ1,2

∂l1

∂l1
∂σ+

+
∂µ1,2

∂q1

∂q1
∂σ+

,
∂µ1,2

∂σ− =
∂µ1,2

∂l−1

∂l−1

∂σ− +
∂µ1,2

∂q−1

∂q−1

∂σ− ,

∂σ2
1,2

∂σ+
=
∂σ2

1,2

∂l1

∂l1
∂σ+

+
∂σ2

1,2

∂q1

∂q1
∂σ+

,
∂σ2

1,2

∂σ− =
∂σ2

1,2

∂l−1

∂l−1

∂σ− +
∂σ2

1,2

∂q−1

∂q−1

∂σ− .

The above expressions then depend on

∂µ1

∂l1
=

(2q1 − 1)q−1(n− 1)

1 + q−1 − q1
+

(1− q1)(q1 + q−1)

(1 + q−1 − q1)2
,

∂µ2

∂l1
=

(2q1 − 1)q−1(n− 1)

1 + q−1 − q1
+

(1− q1)
2 − q−1(3q1 − 2)

(1 + q−1 − q1)2
,

∂µ1

∂l−1

=
(2q−1 − 1)(1− q1)(n− 1)

1 + q−1 − q1
− q1 + q−1(3 + q−1 − 3q1)− 1

(1 + q−1 − q1)2
,

∂µ2

∂l−1

=
(2q−1 − 1)(1− q1)(n− 1)

1 + q−1 − q1
− q−1(2− q1 − q−1)

(1 + q−1 − q1)2
.
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We also know that∂l1/∂σ+ =
√
∆t and∂l−1/∂σ

− =
√
∆t. To completely specify the partials of

µ1,2 with respect tol−1,1 we only need the partials of the tree probabilitiesq−1,1 with respect toσ±.
We calculate:

∂q−1,1

∂σ± = −
√
∆teσ

±
√
∆t

(
er∆t − 2eσ

±
√
∆t + er∆t+2σ±

√
∆t

(e2σ±
√
∆t − 1)2

)
.

We are now left with the task of defining the partials ofσ2
1,2 with respect tol1,2.

∂σ2
1

∂l1
=

(n− 1)q−1(1− q1) ((−2l−1(−9 + 4q−1(2 + q−1)) + 2l1(−3 + 4q−1(2 + q−1)))q1)

(q−1 − q1 + 1)3

−(n− 1)q−1(1− q1)
(
2(l1 − 3l−1)(−1 + q−1) + 8(l1 − l−1)(−1 + q−1)(q1)

2
)

(q−1 − q1 + 1)3

+
(1− q1) (−2l−1((q−1)

3 + q1 − (q1)
2 + (q−1)

2(−5 + 6q1) + q−1(3 + 5(−2 + q1)q1)))

(q−1 − q1 + 1)4

+
(1− q1) (2l1((q−1)

3 + (−1 + q1)q1 + (q−1)
2(−1 + 2q1) + q−1(1 + q1(−8 + 9q1))))

(q−1 − q1 + 1)4
.

Similarly,

∂σ2
1

∂l−1

=
(n− 1)q−1(1− q1) ((2l−1(−11 + 4q−1(2 + q−1))− 2l1(−9 + 4q−1(2 + q−1)))q1)

(q−1 − q1 + 1)3

+
(n− 1)q−1(1− q1) (6(l1 − 3l−1)(−1 + q−1) + 8(l1 − l−1)(−1 + q−1)(q1)

2)

(q−1 − q1 + 1)3

−(1− q1) (2l1((q−1)
3 + q1 − (q1)

2 + (q−1)
2(−5 + 6q1) + q−1(3 + 5(−2 + q1)q1)))

(q−1 − q1 + 1)4

+
(1− q1) (2l−1((q−1)

3 + (−1 + q1)q1 + (q−1)
2(−13 + 10q1) + q−1(13 + (−12 + q1)q1))

(q−1 − q1 + 1)4

Finally, we can express∂σ2
2/∂l1,2 in terms of∂σ2

1/∂l1,2 as

∂σ2
2

∂l1
=
∂σ2

1

∂l1
+

2l1((q−1)
2 − (−1 + q1)q1 + q−1(−1 + 8q1 − 8(q1)

2))

(1 + q−1 − q1)3

+
2l−1(−(−1 + q1)q1 + (q−1)

2(−3 + 4q1) + q−1(3− 8q1 + 4(q1)
2))

(1 + q−1 − q1)3

and

∂σ2
2

∂l−1

=
∂σ2

1

∂l−1

+
2l1(−(−1 + q1)q1 + (q−1)

2(−3 + 4q1) + q−1(3− 8q1 + 4(q1)
2))

(1 + q−1 − q1)3

+
2l−1((q−1)

2(9− 8q1)− (−1 + q1)q1 + q−1(−9 + 8q1))

(1 + q−1 − q1)3
.
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We now move on to the expressions for the partials of the variances with respect to the tree proba-
bilities:

∂σ2
1

∂q1
= (1 + q−1 − q1)

−5
[
2l1l−1(−(−1 + q1)

2(1 + q1) + 4(−1 + n)(q−1)
5(−1 + 2q1)

+q−1(−1 + q1)(3− 15q1 + 4(q1)
2 + n(−3 + 2q1 + (q1)

2))

+(q−1)
4(n(−19 + 36q1 − 16(q1)

2) + 4(5− 9q1 + 4(q1)
2))

+(q−1)
2(9− 15q1 − 8(q1)

2 + 12(q1)
3 + n(13− 36q1 + 35(q1)

2 − 12(q1)
3))

+(q−1)
3(−9 + 20(q1)

2 − 8(q1)
3 + n(−5 + 15q1 − 20(q1)

2 + 8(q1)
3)))

+l2−1(−(−1 + q1)
2(1 + q1)− 4(−1 + n)(q−1)

5(−1 + 2q1)

−q−1(−1 + q1)(19− 9q1 − 2(q1)
2 + n(7− 10q1 + 3(q1)

2))

+(q−1)
4(−26 + 36q1 − 16(q1)

2 + n(25− 36q1 + 16(q1)
2))− (q−1)

3(−35 + 18q1 + 20(q1)
2 − 8(q1)

3

+n(9 + 5q1 − 20(q1)
2 + 8(q1)

3)) + (q−1)
2(−31 + 15q1 + 26(q1)

2 − 12(q1)
3

+n(−23 + 60q1 − 49(q1)
2 + 12(q1)

3))) + l21(−(−1 + q1)
2(1 + q1)− 4(−1 + n)(q−1)

5(−1 + 2q1)

+q−1(−1 + q1)(5 + n+ q1 − 6nq1 − 14(q1)
2 + 5n(q1)

2)

+(q−1)
4(−2(9− 18q1 + 8(q1)

2) + n(17− 36q1 + 16(q1)
2))

+(q−1)
3(−9 + 22q1 − 20(q1)

2 + 8(q1)
3 + n(15− 29q1 + 20(q1)

2 − 8(q1)
3))

+(q−1)
2(−11 + 27q1 − 6(q1)

2 − 12(q1)
3 + n(1 + 12q1 − 25(q1)

2 + 12(q1)
3))
]

∂σ2
1

∂q−1

= (1 + q−1 − q1)
−5(q1 − 1)

[
− (1 + q−1 − q1)(−3(−1 + n)q−1(−(l1 − 3l−1)

2(−1 + q−1)

+(l2−1(−11 + 4q−1(2 + q−1))− 2l1l−1(−9 + 4q−1(2 + q−1)) + l21(−3 + 4q−1(2 + q−1)))q1

−4(l1 − l−1)
2(−1 + q−1)(q1)

2) + l21(1 + 3(q−1)
2 − 8q1 + 9(q1)

2 + q−1(−2 + 4q1))

−2l1l−1(3 + 3(q−1)
2 + 5(−2 + q1)q1 + 2q−1(−5 + 6q1)) + l2−1(13 + 3(q−1)

2 − 12q1 + (q1)
2

+q−1(−26 + 20q1))) + (−1 + n)(1 + q−1 − q1)
2(l2−1(−1 + 2q−1)(9− (11 + 6q−1)q1 + 4(q1)

2)

+l21(−1 + 3q1 − 12(q−1)
2q1 − 4(q1)

2 + 2q−1(1− 8q1 + 4(q1)
2))

+2l1l−1(3− 9q1 + 12(q−1)
2q1 + 4(q1)

2 − 2q−1(3− 8q1 + 4(q1)
2)))

+4(l2−1((q−1)
3 + (−1 + q1)q1 + (q−1)

2(−13 + 10q1) + q−1(13 + (−12 + q1)q1))

−2l1l−1((q−1)
3 + q1 − (q1)

2 + (q−1)
2(−5 + 6q1) + q−1(3 + 5(−2 + q1)q1))

+l21((q−1)
3 + (−1 + q1)q1 + (q−1)

2(−1 + 2q1) + q−1(1 + q1(−8 + 9q1))))
]

∂σ2
2

∂q1
=
∂σ2

1

∂q1
− (1 + q−1 − q1)

−4
[
l2−1(−1 + 8(q−1)

3 + (q1)
2 − 2q−1(−9 + 7q1) + (q−1)

2(−27 + 16q1))

−2l1l−1(1 + 4(q−1)
3 − (q1)

2 + (q−1)
2(−13 + 16q1) + 2q−1(1− 5q1 + 2(q1)

2))

+l21(−1 + (q1)
2 + (q−1)

2(−11 + 16q1) + 2q−1(−3 + q1 + 4(q1)
2))
]
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∂σ2
2

∂q−1

=
∂σ2

1

∂q−1

+ (1 + q−1 − q1)
−4
[
l2−1(−9 + 14q1 − 5(q1)

2 + (q−1)
2(−9 + 8q1) + 2q−1(18− 25q1 + 8(q1)

2))

−2l1l−1(−3 + 14q1 − 15(q1)
2 + 4(q1)

3 + (q−1)
2(−3 + 4q1) + 2q−1(6− 15q1 + 8(q1)

2))

−l21(1 + (q−1)
2 − 6q1 + 13(q1)

2 − 8(q1)
3 − 2q−1(2− 9q1 + 8(q1)

2))
]

B.3 Delta neutral in the MT model.

The option Delta for the MT model is given by

∂FMT

∂S0

= e−rT

(
q0
∂f1
∂S0

+ (1− q0)
∂f2
∂S0

)
,

where
∂fi
∂S0

= Φ(xi) exp

(
σ2
i

2
+ µi

)
+

1

σi
N(xi) exp

(
σ2
i

2
+ µi

)
−N(xi+2)

K

S0σi
(B.2)

99


	Introduction
	Brief Review of the Option Pricing Problem and Models

	Markov Tree: Discrete Model
	Introduction
	Motivation
	Past Work
	Order Estimation: Methodology
	Order Estimation: Results
	Markov Tree Model: Theory
	No Arbitrage.
	Implementation Notes.

	Tree Model: Results
	Comparison of Model and Market Prices.
	Comparison of Volatilities.

	Conclusion

	Markov Tree: Continuous Model
	Introduction
	Markov Tree Generation and Computational Tractability
	Persistent random walk
	Number of states in a tree of fixed depth
	Markov tree probability mass function

	Continuous Approximation of the Markov Tree
	Recursion
	Exact solution in Fourier space
	Numerical solution in real space
	Asymptotic solution in real space
	Comparison of the distribution functions for the Markov tree

	Option Price
	Empirical Results
	Parameter estimation
	Empirical density functions for stock log returns
	Comparing model and market option prices


	Large-Scale Empirical Testing
	Introduction
	Results
	Prior Work

	Option Pricing Models
	Black-Scholes
	Heston
	Markov Tree

	Regression
	Black-Scholes
	Heston
	Markov Tree

	Tests
	Out-of-Sample Pricing Error
	Out-of-Sample Hedging Error

	Data
	LIFFE Paris individual equity options
	SPX options
	Interest rates
	Dividends

	Results
	Comparison of different option pricing models
	Performance of MT model regression procedures

	Error Analysis
	In-Sample Error Analysis
	MT Model Performance: Perturbed Regression Coefficients


	Generalization of the Markov Tree Process
	Introduction
	Delayed Random Walk
	Spectral Method
	Modified Tree Method
	Results

	Maximum Likelihood Estimation in Markov Chains
	MLE's for k-th order Markov chain with Q symbols

	Expressions in the Markov Tree model
	Expressions for 1,2 and 1,2
	Gradient vector for the MT objective function.
	Delta neutral in the MT model.


