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ABSTRACT OF THE DISSERTATION

In this thesis, we propose the Markov tree option pricing el@thd subject it to large-scale empir-
ical tests against market options and equity data to quaitgipricing and hedging performances.

We begin by proposing a tree model that explicitly accouotdtie dependence observed in
the log-returns of underlying asset prices. The dynamiagh@Markov tree model is explained
together with implementation notes that enable exact &ation of the probability mass function
of the Markov tree process. We also show that the tree mo@eatgs in the framework of arbitrage
free option pricing.

Next, we show how the discrete Markov tree process can beedexs a generalized per-
sistent random walk and demonstrate how to approximate & byxture of two normals. This
derivation enables us to obtain a closed form pricing foenfal the European call option allow-
ing for faster calibration using market option data. We tleempirically test both the pricing as
well as the hedging performance of the Markov tree modelrsg#ine Black-Scholes and the He-
ston’s stochastic volatility models establishing its sugenedging performance. Additionally, we
also analyze different regression based techniques toa&stithe parameters in the Markov tree
model that obtain increasingly better hedging results. &k kay down statistical procedures to
rigorously analyze the hedging performance of any optiacingg model.

We then generalize the Markov tree process and explorelatiare with the generalized
delayed random walk. In doing so, we develop a spectral ndefinocomputing the probability
density function for delayed random walks; for such proldethe spectral method we propose
is exact to machine precision and faster than existing naisthim conjunction with step function
approximation and the weak Euler-Maruyama discretizatibe spectral method can be applied
to nonlinear stochastic delay differential equations. \&eycout tests for a particular nonlinear
SDDE that shows that this method captures the solution wittiee need for Monte Carlo sam-

pling.



Chapter 1
Introduction

Substantial development in computational power and seospgice have enabled researchers to
analyze data more than ever before. Financial data, spabjifics not just readily available but
requires little to no cleaning unlike the data sets appganimther fields. This recent development
has made it possible for researchers to test the assumptiads in financial models and also
empirically evaluate the performance of such models. Ia thssertation, we use data driven
mathematical models to solve the option pricing problen #nises in mathematical finance and
further generalize these techniques to develop methodsie problems arising in neuroscience
and biology.

1.1 Brief Review of the Option Pricing Problem and Models

The fundamental problem in mathematical finance is the ograing problem that, at the face of
it involves calculating the fair price of an option given thgtion parameters and the spot (current)
price of its underlying. A European style call (put) optiana financial contract that gives the
buyer theoption (i.e. the right without the obligation) to buy (sell) the w@nlying instrument at
a given price called thetrike price at a particular date in future callegpiry. If the buyer of the
European call (put) option chooses to exercise the right) the seller is under the obligation to
fulfill it by selling (buying) the underlying instrument até strike price when the option expires.

A closed form option price is highly desirable— apart frorftatating the price of the option,
such a formula enables traders and practitioners to creasé &ee portfolio and hedge market
risk. The 1987 crash and the current financial crisis (2008sgnt) have brought to light poor risk
management that, in turn, are consequences of poor opticingpomodels. Since mathematical
models for option pricing form the basis of risk managemt&,current crisis has revealed more
than ever before that the option pricing problem is far fraived.

The basic ingredient in any option pricing model is the séstic process for the asset price.
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Hence, it is not surprising that much of the research in opgiocing is driven by the quest to
incorporate a stochastic process that agrees well withlieerged asset prices. The first popular
mathematical model to price options, the Black-Scholes (B8Ylehused the now famous no
arbitrage argument to arrive at the fair price of a Europqaii‘onLB_La_Qk_and_S_QhQIJEMB). In
their work, they modeled the stock price process as a geamBebwnian motion (gBm) to obtain a
closed form expression for the European option price. Thpgsition that the stock price process
is actually a gBm has met with a lot of criticism mainly due ®iitability to capture tail behaviour
in the stock returns observed during a cral.sh_(Ma.QKlerllzigé‘)ZOEmpirical research has also
validated that the observed log returns of stocks have Be&ails than the normal distribution,
skewness, and positive excess kurtMﬂJM&MﬂllMl BarQnQ-Adé i, 1985;

' [ZQ_QISLB_ehLa‘nd_@Le}LZD_Qb) While these inconsistencies remain, the BS hiuake
several upshots. First, the BS model gives a simple closed #oralytical expression for the
option price enabling faster computation of the optiongri8econd, the Black-Scholes model is a
one parameter model keeping its calibration to market agirices tractable and computationally
inexpensive. Third, the BS model is based on the principleth@fwell accepted arbitrage free
pricing theory. Finally, the binomial option pricing modékt converges to the BS model is a tree
model that facilitates understanding of the stock price @neents at discrete time stms the BS
modelb_Qx_el_dl.L(ls)j%. Option pricing models that attemphtorporate the observed features
noted above in the log returns of the stock price processareasingly complicated and often fail
to retain the upshots of the BS model.

Another feature of the gBm assumption in the BS model is thakatpeeturns of the stock
price process are assumed to be independently and idéntcsttibuted (1ID). This can be easily
understood by studying the binomial tree model that coregtg the BS model in the limit as
the time duration of each time step in the tree goes to zerahdrbinomial tree model, the log
return of the stock price process is assumed to follow a @ropised random walk where both the
increments and the probabilities associated with the mergs are constant. Hence, it is easy to
note that every step of the binomial tree is independensgirevious steps. While the deviation

of the observed log returns from the normal distribution baen well studied in literature, the
IID assumption has been rarely addressed before. Empstigdies on markets on the other hand
indicate that the daily log returns of stocks arat generated from an 11D proce al.,
|J.9_9_Z{3|_Lo_and_MaQKLnlA )The IID hypothesis is extensively tested by studying the-aut
correlation of the transformed time serigs\,,|*}, A € 1,2,.. 8 (Din .,.1993). Significant

1n reality the stock price process only changes at discimie intervals.

2Although the log returns time series is not 11D, there igdiftredictability due to zero autocorrelation of the time
series observed (French and Rboll, 1986; Lo and MacKiinlag0i8lair et al.| 2002).

8If {5}, is the stock price time series at equispaced intervals d,ttiren the log returns time seri€X, } is
defined asX; = IOg(St+1/St).




positive autocorrelation at lags 1-5 of the procéss,, AE is enough to reject the 11D hypothesis
for the original log returns time serigsX, } Iéjlﬁ , Chap. 4). Building upon the bino-

mial model, multinomial models like a trinomial model ansl éxtension (Kamr nd Ritchken,

), @ pentanomial model that accounts for skewness amasksiobserved in the underlying
assetL(,ELimtls_eLHL_ZdW), and an octanomial tree for tlo& grice @@0) have been pro-
posed. The quadrinomial tree moo‘el (Florescu and Meﬂﬁ)m@:ounts for stochastic volatility
in its tree model, like its predecessbr (Aingworth ét@_&}) Even though these models provide
a simple understanding of the stochastic process assumehefatock price by accounting for
different features observed in the stock price processg wbthese models explicitly account for
the non-11D behaviour reflected in the observed log retunm€haptef 2, we propose the Markov
tree model for option pricing that explicitly accounts ftwetnon-1ID behaviour observed in the
log returns through a simple tree model in the framework a$sical arbitrage free pricing. In the
same Chapter, we also propose a method to test dependenceeivarblog returns of the stock
price process. Testing the Markov tree model against magxgdns data on six different stocks
for a period of 45 trading days from the Paris stock exchaagdd us to conclude that explicitly
accounting for the non 11D behaviour leads to better prigoegformance when compared to the
Black-Scholes model.

While practitioners find it easy to understand the discrebe tevolution of the stock price
process through a tree model, they are numerically expensicalibrate against market data by
virtue of being a discrete model. Hence, a continuous mdusl leads to a closed form Eu-
ropean option price is highly desirable. The Black-Scholesli@h discussed above is one such
model that provides a closed from European call option prikeassumes that the underlying
asset follows a geometric Brownian motion: Sf is the price of the underlying at timg then
dS; = pS,dt + oSy dW,, wherey ando are constants and’; is a Brownian motion. It follows
that the Black-Scholes model assumes (i) normality of daityreturns, and (ii) independence of
increments. In Chaptét 3, we examine in detail, both thezalbyiand empirically, the MT model
in which both assumptions are removed. By construction, tliendddel accounts for the serial
dependence of log returns. As we show in Chdpter 3, the disitribgenerated by the MT model
is closely approximated by a mixture of normals leading téoged form pricing formula for the
European call option. Through 10 days of empirical testingoptions traded on 89 of the S&P
100 components, we establish that the MT model prices asecctm average to the market prices
than the BS model prices.

The Black-Scholes option price is extremely close to the tnagket option price for at the
money (ATM) options. However, for in the money (ITM) optioarsd out of the money (OTM)
options, the BS price does not agree well with the market optigce. The BS formula can be
easily inverted to calculate the volatility (commonly ne&al to as the implied volatility) for which




BS formula gives the exact market price. The ITM and OTM ogiane known to have higher
implied volatility than the ATM options, a phenomenon commtycknown as the volatility smile.
This implied volatility is also known to change with the epgiion and is referred to as the term-
structure. These observations regarding the smile an@thestructure have cast significant doubt
over the constant volatility assumption in the Black-Schot®del. As a result, a number of option
pricing models have emerged that treat the volatility asoahgtstic random variable. Typically,
the volatility is modeled as a stochastic process that ieged by a Brownian motion that is
correlated with the Brownian motion driving the stochastiogess for the stock pric@ton,
|L99i; Hagan et $LLQb2). These stochastic processes fitahest option prices very well but do
not confirm to the classical arbitrage free pricing framewdgeneralizations of these stochastic
volatility model involve, incorporating jumps in the stopkce process, assuming a stochastic pro-
cess for the interest rates, and, combining both theser&ﬁakshj_el_atl 7). Empirical tests
Bakshi et aH(;Q_é?i; Kagl:k_(;QlZ) against market data shioatsthe stochastic volatility models
produce better pricing than the Black-Scholes model. They ebnclude that generalizations of
the stochastic volatility models noted above do not necigsaprove the hedging performance
of Heston'’s stochastic volatility model. While the optiongercan always be looked up from the
market a closed form option pricing formula is required teate a risk-free portfolio and hedge
market risk. It is for this reason that any option pricing rabshould be evaluated through its
hedging performance and its ability to hedge market a@).

In Chaptei 4, we subject the Markov tree model to empiricaktagainst the most popular
stochastic volatility model, the Heston’s stochastic tibtg model 3). Using over
three years of Paris LIFFE equity options data, we conclhdethe Markov tree model outper-
forms both the Black-Scholes model and Heston’s stochastatility model in terms of out-of-
sample hedging performance. Empirical tests on two yea8&6f 500 index options confirm the
conclusions made from the Paris LIFFE equity options.

The Markov tree stochastic process captures key featurée aftock price process that in
turn lead to better hedging performance than other optimingrmodels considered in this thesis.
In Chaptefb, we seek to generalize the Markov tree stochasitess to model other stochastic
processes arising in biology and neuroscience. We showvitibaeneralization of the Markov tree
process can be viewed as a delayed random walk and furthelopex spectral method to obtain
the probability mass function of such a random walk. Throagiep function approximation, we
show how this numerical method can be used to solve for aastictdelayed differential equation.




Chapter 2

Markov Tree: Discrete Model

2.1 Introduction

In the Black-Scholes model for the price of a European optoe,of the main assumptions is that
the price of the underlying asset follows a geometric Browm@otion l, ). IfS; is the
underlying asset price at timteone assumess, = u.S,dt + 0.5,dW,, whereu ando are constants
andV, is a Brownian motion. For fixet > 0, defineX,, = log(S(41y:/Snt). Then

0.2

SincelV, is a Brownian motion\¥,, 1y, — W, is normally distributed with meat and variance
t. This implies thatX,, is normally distributed with meafu: — 0?/2)t and variances?t, i.e., the
distribution of X,, does not depend am, so eachX,, is identically distributed. Moreove,, ; is
independent of,,, so

P(X,|X,-1) = P(X,) (2.1)

for all positive integers:, and hence th¢X,,} sequence is IID (independent and identically dis-
tributed).

In fact, (2.1) follows from assumptions that are much moneegal than the geometric Brow-
nian motion assumption; for example, if we take= Sy exp(L;) whereL, is anyLévy process,
(2.3) still holds. The upshot is that most options pricingd®is in use—including Black-Scholes,
binomial, and most jump-diffusion models—implicitly agse that the daily log returns for any
stock are IID. With this in mind, the plan for this Chapter id@lows:

1. We first check whethelr (2.1) is consistent with real datadd this, we apply order estimators
to log return time series data for European stocks in the CA@wéx. For several stocks,
we find that [[2.11) can be rejected in favor of a first-order Marknodel for the stock price
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Strike | Market | Black-Scholes Markov Tree
40 34.49 | 36.57 35.85
48 27.48 | 29.85 28.09
56 20.90 | 23.96 20.83
60 17.78 | 21.36 17.53
64 15.03 | 18.99 14.53
72 10.00 | 14.90 9.55
80 6.26 11.60 5.94
88 3.70 8.99 3.53
120 | 0.32 3.17 0.32
160 | 0.01 0.87 0.01

Table 2.1: Market and model prices @) for a particular European call option on August 24,
20009.

process.

2. We modify the standard binomial tree model to formulateedhmod for pricing options that
is valid when[(2.11) is not. We introduce first-order Markownbeior of the underlying asset
into the tree, by allowing the jumps of the tree to depend oetir the previous jump was
an upward or downward jump. We refer to this model as the Maikee (MT) model.

3. Finally, we test the MT model against the standard Bladkefs model. We find that the MT
model’s option prices are much closer to market prices thamBtack-Scholes model’s prices.
As a preview of our results, we present Tablg 2.1, which caegpmodel and market prices
on August 24, 2009, for a particular European call option.

2.2 Motivation

Let us discuss Table 2.1 in greater detail. On August 24, 2@@9btained from euronext.com
the end-of-day market prices for European call options forlAquide (symbol: Al) expiring in
September 2010. We have tabulated the market prices togeitineprices calculated using the
BIack-SchoIesJ (Black and Schdl&_ﬂgn) model and the MT motteduced in this Chapter. To
calculate prices using the Black-Scholes model, we requioepgarameters, the risk-free interest
rater and the volatilityoc. Using standard estimation procedures from empiricaﬂdma obtain

We estimate the risk-free rate using the no-arbitrage éstyricing formulal” = Se*; here I is the futures
price, S is the spot price, andis the time until expiration of the futures contract. On Aag4, 2009, we found that
S = 75.43 and F' = 75.658 for the Al future expiring in December 2009, which also gives 84 trading days=
0.33 years. This yields an annualized risk-free rate-6f 0.0090543. To estimate the volatility, we start with 252
trading days (or one year) of the adjusted closing price fiorwhich we represent agSy, Ss, . .., Sas2}. We then
calculates, the standard deviation of the log return sequefiog S5/.51, log S5/52, . .., log Sas2/S251 }; this yields
the annualized volatility = 61/252 = 0.41632. This follows [Hull, , Chap. 13).
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r = 0.00905453 ando = 0.41632. The MT model uses these two parameters togetherawithnd
o_, which are the volatilities on days where the stock’s retnoneased (for ) or decreased (for
o_) relative to the previous day’s ret@n

Examining Tabld_2]1, we find that for a strike €#0, the Black-Scholes model’s price
is only 6% greater than the market price, but as the strike increast®xseeds the spot price
of €75.43, the Black-Scholes model’s price diverges considerably: eéxample, at a strike of
€88, the Black-Scholes model’s price 143% greater than the market price. This well-known
divergence is usually explained through the dependencelafikty on the strike price. For each
strike, one computes the value of the volatility such thatBfack-Scholes model price matches
the market price. When the resulting implied volatilities plotted versus strike price, one obtains
the classic volatility smilé_(_I:uJI 9, Chap. 16).

We do not dispute that volatility should vary in some way asiacfion of option strike
and time until expiry. However, in the absence of an exachfof this quantitative dependence,
we ask: do we know for sure that the discrepancy between Blatioles and market prices is
due entirely to the volatility smile? Our view is that, for certain optgnthe discrepancy is at
least partially due to the market’'s knowledge that todagtsms alter or influence the probability
distribution of tomorrow’s returns. Unlike commonly usegtion pricing models, the MT model
accounts for this, and as shown in Tabl€ 2.1, it is signifiyambre accurate than Black-Scholes
for out-of-the-money options, with no strike-dependeriatitities used for either model. Though
the MT model does not provide an analytical formula for théapprice, it is computationally
tractable thanks to a large amount of recombination in tieegree for the underlying asset. We
revisit these implementation issues later in the Chapter.

2.3 Past Work

Before continuing with the plan of the Chapter given in Sedfidh we discuss relevant past work.
A k-th order Markov chain is defined as a sequefice},,~, of random variables such that

PY, Yo 1,....Y1) = P(Yo|Y 1, -, Yo k).

In a k-th order Markov chain, the current statg is allowed to depend only on the passtates.
The order estimation problens to take/N observationg, . .., yy generated by a Markov chain
(of unknown order) and return an estimatef the chain’s order. The estimatordensistentf, as
the number of observation$ goes to infinity,k converges to the true ordemf the Markov chain.

2The parameters.. are calculated in precisely the same way asxcept that for,. we take the standard deviation
of log returns on days when the stock’s return increasedgevitii o we take the standard deviation of log returns on
days when the stock’s return decreased. This is discussgédater detail in Sectidn 4.3.
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In our work, we make use of the provably consistent BIC ordemagor ,@).

In the context of jump-diffusion models, the IID assumpti@as been examined recently by
Camara and Lil(Camara and MOS), who discuss several erapsiudies that have rejected
that stock jumps are IID. The focus of their paper is the dgwalent of a jump-diffusion options
pricing model that does not assume the jumps are IID. Thaik differs from ours in two ways: (1)
non-IID behavior is modeled only through the jumps (and hodugh the diffusion) of the jump-
diffusion process that the underlying asset is assumedltacand (2) the means and variances
of the jumps are allowed to be time-varying. By comparisorcaose the MT model is discrete
in time, every stock price path is a sequence of jumps—nbDrbBhavior is not confined to one
part of the model. We make no claims about the limit of the MTdelaas the number of steps
becomes infinite. However, we do assume that the magnitddasssible jumps remain constant
throughout the price tree.

Markov and semi-Markov processes, including processdsfite state spaces, have been
used to price optionJS_Linnsssin_e rLaLJ_JLbQLD_AmeHIQM?. Though these works assume that
the log return procesl®g(S;/S; 1) follows some type of discrete-time Markov or semi-Markov
process, the tree models that are proposed differ from thenddel in one important regard:
starting from any vertex of the tree, theagnitude®f the up and down jumps are always the same.
The same is true in models where a Markov chain is used to zippate the true underlying
process—seé_(ﬂuan_aﬂd_smojwmoon, for instance. Mtheodel, if we start from a vertex
such that the jump leading to that verteras an upward jumpthen we have different up/down
magnitudes as compared with a vertex such that the jumprgadithat vertexvas a downward
jump. In other words, the magnitudes of the jumps in the MT modieég possess the first-
order Markov property. This same property distinguishesNT model from other tree models
that involve trinomial, pentanomial, or more general brang at tree vertices—th al.,

[Zo_d’;bﬁamada_arld_amﬂdiﬂbozy

2.4 Order Estimation: Methodology

Here we describe the methods used to tfesi (2.1) againsta&al 8Ve begin with a time series
{s0,..., sy} consisting of the adjusted daily closing price of a givercktoWe definez,, =
log(s,/s,—1) and obtain the log return time seri¢s;,...,xy}. Note that each element of
this time series is real-valued. To apply Markov order eatiom, we must first convert the
log return time series into a sequence of symbols drawn froimite set. As in prior work

(McQueen and Thorley. 19911 Tan and Yilmaz, 2002), the sstpivay to do this is with just




two symbols. We therefore define

u xz, >0
Zn = (2.2)
d x, <0,
where the symbols andd stand for “up” and “down,” respectively. Note that this tséarmation
erases the magnitudes of the upward/downward movementedftock. Now that we have a
sequencg z;} 1, of u's andd’s, we can begin to extract maximum likelihood estimates EV&)
of Markov chain transition probabilities. Let us descrilmevthis is done.
By the definition given in Sectidn 2.3, a zeroth-order Markbaia is simply a sequence of
IID random variables. Since each in our sequence can be in one of only two possible states,
if the sequence was generated by a zeroth-order Markov ctiein eachy; was generated by a
Bernoulli random variable with only one parametgr:= P(u), the probability of obtaining:.. In
this casel — p = P(d). In this case, we define the zeroth-order log likelihood

Lo(p) = nulogp + nglog(l — p),

wheren,, is the number ofi's observed in the sequeneg, = N —n,, is the number ofl’'s observed
in the sequence, andl is the total length of the sequence. Solvihk,/dp = 0 for p gives the
MLE p = n,/N, which is in fact the maximizer of(p). Using this MLE, we can compute the
maximum valuelq(p).

Let us now redo this calculation assuming that the sequ{mc}é’z1 was generated by a first-
order Markov chain. Now we require three parameters; P(u), po = P(u|u) andps = P(d|d).
Note thatp, is necessary to handlg, the first element of the sequence. Also note that|u) =
1 —pyandP(u|d) = 1 — p3. Putting it all together, we obtain the first-order log likelod

Li(p1,p2, p3) = mlogpr + (1 —m)log(1 — p1) 4 nyy log pa + nyalog(l — p2) (2.3)
+ ngqlog ps + ngy log(l — p3).

Herem = 1if z; = wandm = 0if z; = d. The notatiom,. denotes, for any choice 7 € {u, d},
the number of times the stringr was observed in the sequence. Now solillg /dp; = 0 for
pj, j = 1,2, 3 yields the MLE’s

b1 =m

A o nuu - nuu

P2 = Nuw + Mg~ #Ofwin first N — 1 slots
A ndd ndd

p3 =

Nad + Ndu ~ #ofdinfirst N — 1 slots

10



| o

0]966| 33 | 1
k|11]180|818| 2
2| 28 | 116 | 856

Table 2.2: Thek, k) entry equals the number of times the BIC order estimator metian order
of k, when applied to a random sequence of lenyth= 500 generated by a randomly gener-
ated Markov chain of true orddr. For results in this table, transition probabilities weravan
uniformly from (0, 1) C R.

Using these MLE’s, we can calculate the maximum valyé, ps, ps).

Following the same methodology, we can assume that the Beq@%}jyzl was generated
by ak-th order Markov chain and then write down theth order log likelihood functior;, of the
unknown Markov transition probabilitigs = (p1,...,py). We plug intoL, the frequencies of
different strings found in the actu@dzj}jy:1 sequence and then maximize overp. We thereby
find both the MLE'sp = (p1, ... py) as well as the maximum value of the log likelihodg(p).
The calculations are carried out in the Apperldix A, for a sege that is assumed to be ath
order Markov chain ovef) states. (In the above discussion, we treated onlyxhe 2 case.)

Armed with this information, we employ the BIC (Bayesian Imf@tion Criterion) order
estimation method. We calculaf¢;j, N) = L;(p) — 2/~ ! log(NN), looping over values of from 0
to K. The BIC order estimaté equals the value of that maximizesf(j, N). In the limit where
the number of data points is infinitd] — oo, it has been proven that the BIC estimate converges
to the true order of the Markov chain generating the @@)

Though the theoretical results on BIC order estimation withrdinite amount of data are
encouraging, they are obviously not strictly applicabletw situation, where the length of the
time series is finite. To remedy this, we study the perforreasfBIC order estimation on finite,
synthetic data sets.

For k € {0,1,2}, we randomly generate transition probabilities fok-¢h order Markov
chain. Each probability is drawn uniformly from the intelry@, 1). Using this Markov chain, we
generate a sequence of length= 500. We apply BIC order estimation to this sequence and
thereby obtain an estimateof the Markov chain’s order. The results are summarized Mel@2.
When we apply BIC order estimation, we loop over possible arget 0,1,2,...,8. However,
in no instance do we find that the estimatexceeds two. This can be seen by noting that for
each value of;, we randomly generated exactl§00 sequences, and each row of the table sums
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k
0 1
0(983| 17 | O
k|11|686|312| 2
2758|182 60

Table 2.3: Thek, k) entry equals the number of times the BIC order estimator metian order
of k, when applied to a random sequence of lenyth= 500 generated by a randomly gener-
ated Markov chain of true orddr. For results in this table, transition probabilities weravan
uniformly from (0.4,0.6) C R.

to 1000. Based on the numbers given in Tablel 2.2, we make the folloestignates:

~ 818 + 116
Pk>1lk=1)~ =0. 2.4
(k= 1] ) 33+ 818 + 116 0-9659 24
~ 966
P(k=0|k=0) = (0.8228 (2.5)

~ 966 + 180 + 28

That is to say, if the BIC order estimator equals one for a gsefjuence, we find there is a greater
than95% chance that the sequence was generated by a Markov chaifeafstorder one, i.e., a
95% chance that the sequence was in faat|ID. On the other hand, if the BIC order estimator
equals zero for a given sequence, we find that there is an xdpm@tely 80% chance that the
sequence was in fact 1ID.

In our observations, after converting real time series foclks intou/d sequences, the max-
imum likelihood estimates of the transition probabilite® always betweet.4 and0.6. This
motivates us to rerun the above tests. This time, when weoralydgenerate transition probabili-
ties for ak-th order Markov chain, we draw each probability uniformigrh the interval0.4, 0.6).
Other parameters of the test remain the same. The resulsuammarized in Table 2.3. Once
again, in no instance do we find that the estimagxceeds two; we rat000 tests for each value
of k, and each row sums t00. Based on Table 2.3, we make the following estimates:

A 312 + 182
Pk>1lk=1)~ =0. 2.6

(k= 1] )~ sz - 00007 (2.6)
P(k=0|k=0) 083 = 0.4050 (2.7)

~ 983+ 686 + 753

These results strengthen our conclusion that if the BIC ard@mator applied to a sequence yields
one, there is a greater thah% chance that the sequence was in faat!ID. Note, however, that
drawing the transition probabilities from the interyal4, 0.6)—centered af.5—has made it very
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easy for the BIC order estimator tonderestimatehe true order of the Markov chain. This is
intuitively clear: if the transition probabilities for éier a first- or second-order Markov chain are
all close ta0.5, then short sequences generated by the Markov chain widap be 11D. One will
require an extremely long sequence from such a Markov chairder to distinguish the sequence
from an 1ID sequencey = 500 samples is simply not enough.

The meaning of these results is that we can reliably use theoBd€r estimator tdalsify
2.J), but never to verify[(2]11). In situations where we gpihle BIC order estimator to real
financial time series and obtain an estimate of at least beeg s a high probability thaft (2.1) is
false; if, on the other hand, we obtain an estimate of zercshveeild discard it.

2.5 Order Estimation: Results

We apply the BIC order estimation technique to stocks listedhe French CAC-40 index. Our
interest in these stocks stems purely from the fact that figan-style options on these stocks are
traded on Euronext, and both the classical Black-Scholeshat our MT model are designed
to price European-style options. For each stock on the indexdownload at least two years of
adjusted daily closing prices from Yahoo! Finance. Noté thare are 252 trading days in one
year, so at least two years’ worth of data gives us a timesefieength/N > 504. We then apply
the methodology of Sectidn 2.4 and produce BIC order estsifateeach time series. We find that
there are six French companies for which the BIC order estimatials one:

e Air Liquide (Euronext: Al), using data from Jan. 1, 2007 totQ, 2009.

AXA Group (Euronext: CS, NYSE: AXA), using NYSE data from Felh.2007 to Oct. 2,
2009.

L'Oréal Group (Euronext: OR), using data from Jan. 1, 2007 to Q&0@9.

Pernod Ricard (Euronext: RI), using data from Jan. 1, 2003 toZ)Q009.

Sanofi-Aventis (Euronext: SAN, NYSE: SNY), using either &uext or NYSE data from
June 30, 2007 to June 30, 2009.

e Sockte Gererale (Euronext: GLE), using data from Jan. 1, 2007 to O&0R9.

We believe that{2]1) is false for stock time series for eddh@se six companies. Later, when we
compare the results of the Black-Scholes and MT models dgaizket prices for European call
options for these six companies, we will add further evigetathis claim. Note that we could
also test[(211) by using more traditional time series methsxth as ACF and PACF. However,
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Figure 2.1: lllustration of the first three steps of the Markee. An upward edge always bifurcates
into v andw. A downward edge always bifurcates int@andy. In this way, the tree accounts for
the first-order Markov nature of the underlying asset’s wim time series.

since our focus is obtaining a discrete tree model to pricmog, it seems natural to convert the
original time series into a finite state time series and thet{2.1). In future work, we shall explore
whether there exist time series whose non-11D behavior eastetected correctly by Markov order
estimators andot by ACF-based methods, and vice versa.

2.6 Markov Tree Model: Theory

We now describe a tree model that accounts for the first-avthekov dependence in the log
return time series. We restrict our model to accommodatg first-order Markov dependence
(instead of, sayk-th order Markov dependence) not only to obtain computatitnractability but
also to maintain parsimony. Like the binomial tree, our tsegenerated by working forward from
valuation day to expiration of the option. L#&f, be the stock’s spot price at time step When
n = 0, we use one step of the standard binomial tree

Forn > 1, let us define two events:

St =1{Su=Su1} (2.9)
S =1{S, < Su_1}. (2.10)
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In words, the even$’ is the event that the stock price increased from time stepl to time step
n. The eventS; is the complement of'', i.e., the event that the stock price decreased from time
stepn — 1 to time stepn. We can now write down our model for the evolution%f, forn > 1:

P(Spy1 = 05,]S) = ¢* (2.11a)
P(Spi1 =wS,|SH) =1-¢" (2.11b)
P(S,+1=125,]5,)=q (2.11c)
P(Spi1=9Su|S,)=1—q" (2.11d)

Here we have introduced four symbolsw, x andy, which represent different factors by which
the stock price at every time step is allowed to change. Atingrto our model, if the stock price
increased from step — 1 to stepn, then the stock price at step+ 1 is vS,, with probability ¢*
andw.S,, with probability1 — ¢™. If the stock price decreased from step- 1 to stepn, then the
stock price at step + 1 is .5, with probability— andyS,, with probabilityl — ¢~.

We remark that we think of, ¢*, andq~ as, respectively, risk-neutral versions of the em-
pirical probabilitiesP(u), P(u|u), andP(u|d). We shall explain later how, with respect to these
risk-neutral probabilities, the stock price procésss in fact a martingale.

The first three steps of the tree are illustrated in Figure &.Wve let S, denote the initial
spot price of the stock, then it is clear thifat e J; where

Jz = {Souv?, Souvw, Spuwz, Syuwy, Sedzv, Sedrw, Sedyz, Sedy*}.

In general, let/,, denote the vector of possible states the stock can be invasteps of the Markov
tree. Leto, : J, — Z* be the function that counts the number of paths in the tredehd from
Sy to a given element of,,. Forw € J,, we refer tod, (w) as theduplication numbenf statew.
We list without proof these facts:

e J, containsn? — n + 2 unique elements.

That is to say, states do recombine. If the stock decreasasSsuvw, it reaches the same
value as if it increases frosyuwx—in both cases, it reaché&suvwz. Because there are two
possible paths leading frosy to Syuvwa, we assign the duplication numbgf Syuvwz) =

2. Because states recombine, the number of statesb@screase like™. In the standard
binomial model, the number of states grows linearly in thptdef the treen. In the MT
model, the number of states grows quadratically in the depthe treen. This polynomial
growth ensures the tractability of the MT model as a companiat method.

® > ey On(o)=2"
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One can make sense of this intuitively by recalling that ifdeenot count the duplication of
states, then a tree of depthwill contain 2™ states.

Let p,, denote the polynomial that gives all states/jntogether with their duplication num-
bers, i.e.,

pn(u7 d7 U, wa Z’, y) = Z 5n(W)CU

weJp
Thenp,, may be computed via
n—2 n—2
v w 0 0 v w 0 0
0 0 =x 0 0 =«
Dn = u[vaO} v 1+d[00xy] Y 1,
v w 0 0 v w 0 0
0 0 = vy 0 0 = y

wherel denotes a column vector with each entry equal to one. Theedgfaovmay be derived
by writing the adjacency matrix for a directed, weightedpdraelated to our Markov tree.
For now, we merely mention that once we use the above iteratatrix formula to compute
p,, for a givenn and thereby generate a Markov tree of deptlve can then reuse this tree
many times to price many different options. For differenti@ps, Sy, u, d, v, w, x, andy
will be different, but the set of states, and the duplication numbe#s will always be the
same.

For example, carrying out the tree one step further than shwigurd 2.1, we find that

Ji = {Souv?, Squv*w, Spuvwz, Spuvwy, Souw?x, Souwyx, Souwy?,

Sodxv?, Sodzvw, Sydx*w, Sodzwy, Sedyzv, Sody>x, SodyS}.

We haved, (Syuvwz) = d4(Sodzwy) = 2 andds(o) = 1 for all other possible statese .J,. Note
that, as per our formula, there afe— 4 + 2 = 14 elements in/,, and)_ ., di(0) = 16 = 2.

Next, note that it is simple to calculate the probabilitytttiee stock’s price path reaches

a given state in/,, starting atS,. Leto = Sou™d' " v*w’z°y? denote an arbitrary state if,.
(Clearly eitherm = 0 or m = 1, and also the sum of the exponents must equale., 1 4+ a +
b+ c+ d = n.). Then, by the definitions made in_(2.8) abd (2.11), the abilliy of reachings
starting atS, is simply equal to

m —m a b, _\c \d
P(o) = 6,(0)g" (1 —q)" ™ x (¢")" (1 =¢%) " (¢7)" (1 —¢7)". (2.12)
Let us now explain how we use the tree to price a European paiira Let X' denote the
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strike price and let, denote the spot price at the time of expiry. The payoff of thigom is denoted
by (S, — K),, which equals zero unlest — K > 0, in which case it equalS, — K. LetT denote
the time until expiry. We fix the total number of stejysin the tree and sek¢ = 7'/N. With these
definitions, we can see théf is a random variable that can take on any of the states/ with
probabilities given by[(Z.12). We have enough informatmwtite down the expected value of the
option’s payoff at the time of expiry:

E((S. = K)4] = Y Ioox(oc — K)P(0). (2.13)

oceJn

Herel,.  is an indicator variable that equals one when- K and zero whem < K. Now let
r equal the risk-free interest rate. Then we define the MT ni®dell option price to be expected
payoff at the time of expiry, discounted to the present time:

C = TE[(S, — K),]. (2.14)

Note that using precisely the same approach, we can pricepEan put options without
making use of put-call parity. The payoff of a European putapequals(K — S,.).. The MT
model’s put option price is, once again, the discounted eegepayoff:

U=e¢"TE[(K - 5,).]. (2.15)

2.6.1 No Arbitrage.

Let us show that our model does not admit arbitrage. We define

_ exp(rAt) —d
B u—d
= exp(rAt) — w = exp(rAt) —y

9

v—w T —y

One may easily verify that with these three risk-neutrabpilities,

E[S1]S0] = uSoq + dSp(1 — q) = ™S,
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and forn > 1,

E{Sn+1’5n7--~750] :E[SnJrl‘Sn? S(], ]P(S ) [ n+1‘Sn7--- So,S;]P(S;)
= [vS,q" + wS,(1 = ¢")] P(S}) + [2S.q™ + ySa(1 —q7)] P(S,)
= e™MS, P(SH) + e S, P(S))

= erAtSn.

This is enough to imply that the discounted stock progss: e "5, is a martingale under the
risk-neutral I’Obabl|l'[IeS given by, ¢+, andg—. Then, by the first fundamental theorem of asset
pricing (see 04 Chapter 2.4)), there is no ag®tin the MT model.

2.6.2 Implementation Notes.

The parameters, d, v, w, x, andy are estimated as follows. For each date on which we wish to
value an option, we start with the time series of one prior'gesorth of adjusted closing daily
returns for the stock. We scan through this time series amd fewo disjoint time series: each time

a given day'’s return exceeds or equals the previous day'sdaehat return to serids each time

a given day’s return is less than the previous day’s, we aaldr&turn to serie8. We then take the
logarithm of all returns in seriesand2 and also in the original time series. Let and/, denote

the standard deviation and length of log return setieand let¢_ and/_ denote the standard
deviation and length of log return serigsLet 5 be the standard deviation of the entire log return
series. The standard deviations are then converted talit@ats, o, ando_ usinge = /2526
andoy = /lLo.. With these volatilities, we set

U = exp (a\/Kt) ,
v = exp (0+\/E> , T =exp <J_\/E> ,

where At is the duration of each time step in the model. We theniset 1/u, w = 1/v, and
y=1/z.
2.7 Tree Model: Results

For 44 trading days from July 17, 2009 to September 17, 20@9racked the end-of-day market
prices for European-style call options for the six compsiiged in Section 2]5. Data was obtained
from euronext.com. We emphasize that all of the tests welaratdo describe are out-of-sample
tests; at no time did we use past or present market pricestioinspas inputs to the MT or Black-
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Scholes models. The fact that the MT model requires no idor with options price data from
real markets is in marked contrast to, say, Rubinstein’sigdgbinomial tree mode in,
2012).

On day: of the study, we used stock and futures prices from days éeafpion day: to
estimate parameters that are fed as inputs to the MT and Belkies options pricing models.
Specifically, we estimated the risk-free ratand the volatilitiesr, o, ando_, which determine
the jumpsu, d, v, w, z, andy. With these parameters, we priced all exchange-tradedrgptising
both the MT and Black-Scholes models. For the MT model, we uged 501 steps. For each
option at hand, we compared the outputs of these optionggrinodels on day to the market
price of the same option on day

2.7.1 Comparison of Model and Market Prices.

We first consider the day-by-day performance of the MT moeéetws the Black-Scholes model,
averaged across all strikes. Ldte a fixed day. Léb;, m;, andM; be the vectors containing Black-

Scholes, MT, and market prices on dafor options of different strikes (but the same expiration
date). On each day, we compute

. M., ; — M,
o D =Ml [Jmi — Ml (2.16)

€ ) [
ML 2 [ M |2
In each of the six panels of Figure 2.2, we plot the relativeresurves:? (in red) ande’” (in blue)
versus day for options from each of the six companies listed in Sedfidh @&spectively.

We then consider the strike-by-strike performance of thervbtel versus the Black-Scholes
model, averaged across all days. liéte a fixed strike price. Ldbh;, m;, andM; be the vectors
containing Black-Scholes, MT, and market prices for optiaiith strike j on different days (but
the same expiration date). On each day, we compute
_ |lmy — M

oy = 1 2 (2.17)
IV |2 7 1M1z

b: — M.

In each of the six panels of Figure .3, we plot the log retaéwor curvesog(+}) (in red) and
log(~7") (in blue) versus strike pricgfor options from each of the six companies listed in Section
2.3, respectively.

In both Figurd 2.2 and Figufe 2.3, the following symbols aedito denote common expira-
tion dates: ¥” means September 2009¢*means March 2010,¢” means September 2010, and
“+” means March 2011.

Comparing Black-Scholes and MT relative errors for optionthwhe sameexpiration date
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means comparing blue and red curves viitentical symbols in Figuré 2]2 and Figuke 2.3. For
example, in Figuré 212, comparing blue and red curves with Symbols shows that the MT
model’s prices for options expiring in March 2011 are mudasel to market prices than the Black-
Scholes model’s prices for options expiring in March 2014isTis true for all six companies.

In fact, comparing blue and red curves in Figurg 2.2 with fdah symbols reveals that the
only expiration date for which the two models produce corapke results is the September 2009
expiration date, denoted by.” In this case, for all six companies, the MT model still pucds
relative errors™ that are two to ten times smaller than the relative eropsoduced by the Black-
Scholes model. For all other expiration dates, compariegwo models on a day-by-day basis,
the MT model’s call option prices are far closer to marketgsithan the Black-Scholes model's
prices.

Moving to Figure 2.B, we see that as the strike price incigabe Black-Scholes model’s
error increases more rapidly than the MT model’s error. Nloé¢ each point on each of the panels
in Figure[2.8 is an aggregate result, averaged (in the sdrtbe 8-norm) over 44 trading days’
worth of data. For this reason, we believe Fiduré 2.3 pravateong evidence that the discrepancy
between Black-Scholes and market prices for out-of-theaypaptions is not entirely due to the
dependence of volatility on strike price and time until eapon.

2.7.2 Comparison of Volatilities.

For each of the six stocks listed in Sectlon] 2.5, we plot irure{2.4 the three volatilities, o,
ando_ on each of the 44 days. These plots show that for three of #hstacks (Al, OR, and
GLE before day 40), the difference between ando_ is small, on the order of%. For these
three stocks, the MT model, in the way we have implementedtit the formulas from Section
[4.3, produces option prices close to those produced by atiahonodel with with volatility given
by eithero,, o_, or perhaps a weighted average of these values. It is nateyibrat a binomial
model withvolatility estimated by splitting past historical data leason whether returns were
increasing or decreasing relative to the previous diaes far better at tracking market prices than
a vanilla Black-Scholes (or, equivalently, binomial) moadh volatility . The formulas given in
Sectior4.B for,. were determined by extensive trial-and-error. In futurekyave shall provide
a more rigorous theory for estimating the parameters, x, andy that serve as inputs to the MT
model.

On the other hand, the plots in Figlre]2.4 also indicate thrathfree of the six stocks (CS,
RI, and SAN), the difference between ando_ is closer to10%. In this case, one can show
that the set of states;,; together with[(Z.12) yield a probability distribution oretiset of stock
prices at the time of expiry that is different from the distrion of final stock prices provided by
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a standard binomial model. For these three stocks, the MTehtimks not reduce to a binomial
model. Depending on the specific values of the parameteis,piossible for the MT model’s
final stock price distribution to feature heavier tails antkresting asymmetries relative to the
lognormal distribution. We expect that these featuresctwhiave been reported elsewhere in the
financial time series literature, will appear when we ustéebebethods for estimating...

2.8 Conclusion

Over the past two years, many securities have been subjaafj&fluctations in price, and financial
modeling assumptions that used to be considered standauttisiow be called into question. One
such assumption i§$ (2.1). In this Chapter, we have testell (2ifg the BIC order estimation
method. The tests have revealed six stocks in the French CAGd48 whose log return time
series is not IID. For these six stocks, and for other stockes& log return time series is best
modeled by &-th order Markov chain withk > 1, we propose the MT options pricing model.
The number of states in the Markov tree grows quadraticallthe depth of the tree, giving the
model computational tractability. Implementing the MT regdve find strong agreement between
the MT model’s prices and market prices.

In future work, we shall compare the MT model against morenstjgated options pric-
ing models, such as those incorporating stochastic vityatiThe first-order Markov dependence
of our tree model is a general concept that could be incotpdranto discrete-time stochastic
volatility models (Florescu and ViéMOS), which couldlier reduce the error between model
and market prices. Finally, we shall extend the MT model togweather derivatives, espe-
cially in light of scientific studies that propose Markov ahenodels for quantities such as rainfall
riel and Neum h,ﬁ62).
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Figure 2.2: From left to right, top to bottom, we plot moddklt&e errors for the six companies
listed in Sectiom_2]5 in the following order (alphabeticatihe Euronext symbols): Al, CS, GLE,
OR, RI, and SAN. Each panel displays relative eredréBlack-Scholes error in red) an¢t (MT
error in blue) versus dayfor options with different expiration dates. The followisgmbols are
used to denote common expiration dates:rheans September 2009%™means March 2010,¢"
means September 2010, and™means March 2011 Note that for all expiration dates except
September 2009, the MT model’s relative error curves arebtdow the Black-Scholes relative
error curves.For options expiring in September 2009, both models yieltlgedentical results.
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Figure 2.3: From left to right, top to bottom, we plot moddhteve errors for the six companies
listed in Sectiom 2J5 in the following order (alphabeticatihe Euronext symbols): Al, CS, GLE,
OR, RI, and SAN. Each panel displays log relative ertog@;?) (Black-Scholes error in red) and
log(v}*) (MT error in blue) versus strike pricgfor options with different expiration dates. The
following symbols are used to denote common expirationgddte means September 20094™
means March 2010, means September 2010, ang™means March 2011Note that for all
expiration dates, as the strike price increases, the Blackeles model’s relative error curves far
exceed the MT model’s relative error curves.
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Figure 2.4: From left to right, top to bottom, we plot the wdiBes for six companies listed in
Sectior 2.6 in the following order (alphabetical in the Ehext symbols): Al, CS, GLE, OR, R,
and SAN. Each panel displays the volatiliesr, ando_ in blue, green and red respectively versus
dayi. These values, o, ando_ are used to calculate the jump factarsy andz, respectively.
Recall that the jump factorg, w, andy are the reciprocals af, v, andz, respectively.Note that

in the MT model, volatility is assumed to be independentestttike price and the expiration date

of the option.
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Chapter 3

Markov Tree: Continuous Model

3.1 Introduction

The Black-Scholes model for European call options assunag¢#ith underlying asset follows a ge-
ometric Brownian motion: if; is the price of the underlying at tiniethendS; = uS;dt+oS;dW;,
wherep ando are constants and'; is a Brownian motion. It follows that the Black-Scholes model
assumes normality of daily log returns and independenascoéiments. The purpose of this Chap-
ter is the detailed examination, both theoretical and eogdjrof a model in which both assump-
tions are removed. This model was introduced as the Marlea/(t¥I'T) model in our earlier work

0). The name of the model indicates tleatrée is a generalization of the
standard binomial tree, where the up/down factors atiste depend on the direction of the step
taken at step. This is illustrated in Figl_3]1. Though the descriptionlé imodel is simple, and
though it contains only two additional static parameters &ndo ) that must be estimated from
data, the MT model leads to a number of non-trivial propentigh significant consequences for
option pricing.

By construction, the MT model accounts for the serial deproéef log returns. As we
show, the distribution generated by the MT model is very @lpspproximated by a mixture of
normals. Though this topic is not pursued further here, tifervbdel is a tree model that could
be used to price path-dependent options. Hence the MT maalebe seen as combining the
strengths of normal mixture models, non-lID models, and treethods all within the framework
of risk-neutral pricing. In this Chapter, we derive an acteiraomputationally efficient, closed-
form approximation to the MT model option price. We go on tbjsat our model to out-of-sample
comparisons against market prices and Black-Scholes madekp

The MT model incorporates several features that have beeiest separately in the liter-
ature. The first such feature is the use of a mixture of normklss widely accepted that the
observed distribution of daily log returns for stocks haavier tails than the normal distribution,

skewness, and positive excess kurtosis (|C|Qnt, 2001; Camj@ll 1997| Barone-Adesi, 1985;
Longin, [2005; Behr and®ter, 2009). Many distributions have been proposed to mtitese

properties. These distributions can be classified intorpatac and non-parametric models—
for an extenswe list, see (Jackwerth, 1999). Parametridatsanclude generalized distributions

L_19_95) and mixture distributions (Ka@84). Empirical tests (Behr andfel,

) conclude that normal mixture models fit observed Iogrns better than other generalized
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parametric models. In recent work, mixture distributioagdbeen used in both option pricing and

portfolio optimization [(Tan and Chui, 2012; Cai and Kou, 2011miRani, 2011; Buckley et al.,
2008 Brigo and Mercuria, 2002; Ritchey, 1990) with success.

The second feature of the MT model is the non-11D process tsenodel the underlying
asset dynamics. The study of (Niederhoffer and Osborneg)1®8s one of the first to examine
serial dependence of log returns, providing strong evideasfcdependence in tick differences.

Daily returns have been studied by many authors, e.q. itF#@id Bhargava, 1973; Fielitz, 1975;
Ding et al., 1993; Taylor, 2007), providing considerabl@lence that daily returns are not inde-
pendent. For returns sampled at longer intervals, i.e.,tinhpor yearly, the evidence is incon-
clusive MII@D Note that the short-term depenel@ftog returns need not invalidate the
weak form of the efficient market hypothem 970).

Several option pricing models have been proposed that dowerial dependence of the
underlying asset’s returns. A direct approach is to expficiccount for dependence on the pastin
the underlying asset model. This strategy has been pursitedarkov and semi-Markov pro-

cesses (Janssen et al., 1997; D'Amico et al., 2009), jurfipsibn processes with non-1ID jumps
dC_amar_a_and_LlL_ZOLbS) and stochastic delay differentiabéqos (SDDES)L(Qha.ng_eleL._Zfbll
2010} Swords and Appleby, 2010; Wu M, et al., 2008; Chang antted 2007; Kazmerchuk etlal.,
2007;| Arriojas et dl., 2007; Appleby etlal., 20fi2a,b). In tase of SDDE models, obtaining a
closed-form approximation for the option price is much naifécult than for the MT model. Fur-
thermore, when SDDE models are proposed in the literathespérformance of the models has
not been tested using market data.

Another approach that yields a non-IID model is to introdtieeconcept of a regime; in a
regime-switching model, a stochastic process (typicallyjarkov chain) drives the regime from
one state to another, and model parameters such as vglatilit the risk-free rate are functions
of the regime state (Mamon and Rodfi bp_,dei Aingworth et206; Basu and Ghdsh, 2d)09)
Finally, we note that in the framework of stochastic and/@&xR&H volatility M}
[tl_elen_and_NanbL_ZQbO) models, non-1ID returns are a si@etedf a volatility process that aI-
lows for memory.

The general outline of this Chapter is as follows. In Sedfidh @e prove that the tree is
recombinant and give an exact formula for the option pridee &xact formula relies on a discrete
p.m.f. (probability mass function) that becomes prohieity difficult to compute as the size of
the time step vanishes. Therefore, in Sedtioh 3.3, we appedg the p.m.f. by a continuous p.d.f.
(probability density function), which turns out to be a noise of normal distributions. In Section
3.4, we use the approximate continuous p.d.f. to derive seddorm option price. In Sectign 3.5,
we conduct out-of-sample empirical tests that show thatMfienodel’'s prices are very close to
market prices. In the same section, we give our conclusindslaections for further research.

3.2 Markov Tree Generation and Computational Tractability

Here we establish that the maximum number of possible statasMarkov tree of depth is
n? —n + 2. We also give a method for computing the p.m.f.Sgf the underlying asset price after
n steps of the tree.
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Figure 3.1: Tree of depth = 6 showing recombination of paths of the underlying asset én th
MT model. The asset begins with priég and is multiplied by the weights along the path. For
example, a possible path of lengtshown here i$ uwzx. Both the probabilities and the outcomes
of S,,+1/S, depend on whethef,,/S,,_; was an upward or downward movement. In this way, the
tree accounts for first-order Markov dependence of log nstuAt depthn, there are? — n + 2
possible states, as shown in Secfion 3.2.2.

3.2.1 Persistent random walk

The time evolution of5,, = log S,, under the Markov tree is equivalent to a persistent randotk wa
on the real line, where both the size and direction of the aradlstep at time step + 1 depends
on the direction of the step taken at time step

Spi1(w) = Sp(w) + G(H(S, — Sp_1),w), (3.1)

where?H is the Heaviside function

%(x):{l x>0

0 =<0,

andG(1,w), G(0,w) are random variables with p.m.f.'s

P(G(1,w) =logv) =q", P(G(l,w)=logw)=1-¢", and
P(G(0,w) =logz) =q~, P(G(0,w)=logy)=1—¢q"
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forn > 2. Forn = 1, the p.m.f. ofG(1,w) andG(0,w) is given by

P(G(1,w) =logu) = ¢
P(G(1,w) =logd) =1—gq.

We assuméog u, log d, log v, log w, log z, log y are all non-zero, so tha (S, = S,_;) = 0.

3.2.2 Number of states in a tree of fixed depth

For the moment, we ignore the size of the walker’s steps acasfonly on their direction. If the
walker moves to the right (respectively, left), we call thetdsH (respectively, tailg"). The walk
aftern steps can be regarded as a random sequence of Headd tailsT'.

Letny (respectivelynr) bel if the first element igf (respectively;’) and0 otherwise. Let
nyH, nyT, NTH, @Ndnyr denote the number of subsequences of the A, HT', TH, andT'T.
Then

nuy + nur + nrg +npr =n — 1. (3.2)

Letv = (ng, nr, ngw, ngr, nra, nrr). The final position of the walker iS, = Sy +s - v
wheres = (logu,logd,logv,logw,logz,logy). Hence enumerating all possible vecterss
equivalent to enumerating all possible outcomes,pf

Suppose that the sequence starts ith_et ¢ denote the number @fansitions

t=npr+nry. (3.3)

Now ¢ can be anything frond to n — 1. Givent, we knownyr andny g, since transitions must
alternateH to 7" and7 to H. Fort = 0, there is only one sequenéeH H - -- H.

Fort = 1,2,...,n — 1, a walk with¢ transitions is a sequence bof+ 1 blocks, with odd
blocks consisting of consecutivé’s and even blocks consisting of consecufiVe. We start with
the sequencé/THTHT --- of lengtht + 1. To convert this into a walk of length, we must
insert extraf’s into the H blocks and extrd™s into theT blocks, inserting: — ¢t — 1 elements in
total. Nowny is the number ofi’s inserted, so it can be anything fraimon — ¢ — 1, forn — ¢
possibilities in total. Once we know i, we solve fom, using [3.2).

n—1
For a walk of lengthn starting with H, the number of possible’s is 1 + Z(n —t) =

t=1
-1 . . . I
1+ M Twice this number is? — n + 2, the total number of possibilities far. Note that

2
the regime-switching model of (Aingworth et al., 2006), #aal with two volatility states, results
in a different tree that also has quadratic complexity.

3.2.3 Markov tree probability mass function

Now let us assume is given and count how many walks correspond to that san&tarting with
H, there arer = nry + 1 blocks of heads antl= n gt blocks of tails.

Givennyy andnyr, to obtain the walk we must decide how many of thg; extra heads
to insert into each block, with the total being ;. The number of such possibilities is the number

28



of weak compositions af; into « nonnegative integerg;##*4~1).

We must also decide how many of the, extra tails to insert into each block, with the
total beingnr. The number of such possibilities is the number of weak catijpns ofnyr in b
nonnegative integerg;”7 "),

Hence the number of walks that start withand correspond te is

#(v) = ngg +a—1\ (npr +b—1 _ ("mE t+nrH nrr +ngr — 1 ‘ (3.4)
a—1 b—1 nrH ngr — 1
If instead the walk starts witfi’, the only difference is that = nyy andb = nyr + 1 and we
obtain

#(V): TLHH+G—1 nTT+b—1 _ nHH+nTH—1 nrr + nygr (35)
a—1 b—1 nrg — 1 ngr
as the number of walks. ) )
Once we know how many ways there are of reacltipgrom S, we can compute

P(S, =Sy+s-v)=#(V)q", (3.6)
whereq = (¢,1 —¢,¢",1—q¢",q",1 — ¢~ ) andq’ = H?Zl ¢;"7. In this way, the entire p.m.f. of
S, is determined.

Care must be used when applying the above formulas, as theptddetect whether the
walk is allowed or not. If the walk correspondingtas allowed, then the above formulas give the
number of walks.

This begs the question of enumerating all allowes at a fixed deptim. This can be
done using the following algorithm, which works for all walkhat start with/ (so thatny =
1):

print v =(1,0,n—1,0,0,0)
fort=1—n-—1do
forngg =0—-n—t—1do
nrr = (n—t—l)—nHH
print vV = (1, ngy, T, NTH, nTT)
end for
end for
To enumerate all walks that start with(so thatn = 1), we use the same algorithm as above with
two minor changes: (i) switch the definitionsof andnry; (ii) change the = 0 output ofv to
bev = (0,1,0,0,0,n — 1). Using both algorithms, we produce a list of all allowed at a fixed
depthn.
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3.3 Continuous Approximation of the Markov Tree

We can see from(2.13) that the key ingredient in computireggNfarkov tree options price is
taking the expected value of the payoff function with resgecthe p.m.f. [(3.6) generated by
the tree. Though we have developed an efficient algorithneterate all states of the tree, the
quantity#(v) defined by[(3}4) and(3.5) is difficult to compute in finite-@ston arithmetic due
to the large binomial coefficients involved. In this sectiare develop a closed-form continuous
p.d.f. that closely approximates the discrete Markov treefp

The p.d.f., which turns out to be a mixture of normals, algdds an intuitive understanding
of the distribution of asset prices generated by the Markes. tThis understanding will lead us to
a reasonable method to statistically estimate the parasnete, andx from market data.

3.3.1 Recursion

To develop a continuous approximation, we first rewrite tiseréte-time procesk (3.1) as a recur-
sion. We assume all movements are symmetric about oned(i-e.l /u, w = 1/v,y = 1/z) and
define

l, =logu = —1logd (3.7a)
Iy =logv = —logw (3.7b)
ly =logx = —logy (3.7¢)

We assumé,, [;, andl, are all positive.

Let R(n, ) be the probability of reaching a valdeon the real line im steps by moving to
theright (in the positive direction oiiR) in the n-th step. Similarly, let’.(n, §) be the probability
of reaching the valué in n steps by moving to thkeft (in the negative direction oR) in then-th
step.

In the Markov tree, sincég v andlog = are the only positive steps allowell(n, s) is the
probability of reaching in n steps by taking either lag v step or dog x step in then-th step. If
then-th step was dog v step, then after — 1 steps, the walker was at- [, and had reached there
by taking the(n — 1)-th step to the right. The probability of the walker reachihis position in
this way aftem — 1 stepsisk(n — 1,5 — [;). Similarly, if then-th step was &g = step, then after
n — 1 steps, the walker was at- [, and had reached there by taking the- 1)-th step to the left.
The probability of the walker reaching this position in thiay aftern — 1 stepsisl.(n —1,5—1ls).

Putting things together, we obtain

R(n,8)=q"R(n—1,5—10;)+q L(n—1,5—1,). (3.8)

Next, sincelogw andlogy are the only negative steps in the Markov tréép, 5) is the
probability of reaching in n steps by taking dogw step or alogy step in then-th step. If the
n-th step was dog w step, then the walker was at- [; aftern — 1 steps and had reached there
by taking the(n — 1)-th step to the right. The probability of the walker reachihi position in
this way aftern — 1 steps isR(n — 1,5 + ;). Similarly, if the n-th step was dog y step, then
the random walker was at+ [, aftern — 1 steps and had reached there by taking(the- 1)-th
step to the left. The probability of the walker reaching fisition in this way aften — 1 steps is
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Putting things together, we obtain

Ln,8)=(1—-¢"HR(n—1,54+0)+ (1 —q )Lin—1,5+1s). (3.9)

3.3.2 Exact solution in Fourier space

We introduce the following forward and inverse Fourier sfmnm pair, with the variablé as the
Fourier conjugate variable to

~ o 1 o -
f = [ feeds 16 =5 [ i (3.10)
Define . o
M = |:(1q_z+)eikl1 (1q_2—)6ik12‘| . (3-11)

Then, taking the Fourier transforms of both sideq of](3.8) @19), we are able to put the system
into matrix-vector form and solve:

A A

Eéz ZH - [Z(Z _ i /m =M Egm - (3.12)

Let P(n, 5) = R(n,5) + L(n, 5). ThenP(n, 5) is the p.d.f. of the random variabl%. The Fourier
transform of the p.d.f. is given by(n,k) = R(n,k) + L(n,k). We computeP(n, k) by left
multiplying equation[(3.112) with the row vectaf:

Pln, k) = 11 M7 {*’?“’ ’“)] . (3.13)

SinceM is diagonalizable, raising it to the-th power is computationally economical and we can
easily computeP(n, k). By construction of the Markov tree?(1,5) = ¢é (5 — (S + lu)> and

L(1,3)=(1—q)d (5 —(Sp— lu)>, whered is a point mass (Dirac delta).

3.3.3 Numerical solution in real space

In the numerical inversion of (3.1.3), the only difficulty thaight possibly arise would be that the
spectrum of)M lies too close to the unit circle i@€. For this reason, we numerically explore the
spectrum ofM in Fig. [3.2. Letm; andm, be the eigenvalues df/. We plot the modulijm; |
and|m,| as functions oft for two different sets of parameters. The two plots showmettaze
representative; the spectrumf is well-behaved.

To invert the Fourier transforni(313) and obtain the p.af.S,, we use the algorithm
described by (Inverarihk,lQbS). This approach to finding phd.f. is faster and more accurate
than Taylor expanding the right hand side of equations @) [3.9) about, andl, and then
numerically solving the partial differential equation shabtained.

Note that even though numerical Fourier inversion of (3yi8)ds a fast, accurate approx-
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Figure 3.2: Moduli of the eigenvalues,, m, of the matrix)/ defined in[(3.111). We pldtn,| as

a function of Fourier variablé to show that, for almost all values éf the eigenvalues are in the
interior of the unit disc inC. For the plot on the left, we sét= 10, = 1,¢" = 3/5,¢~ = 1/2. For
the plot on the right, we sét = 5/4, 1, = 1, ¢" = 1/5, ¢ = 7/10. We obtain similar behavior
for many other parameter choices.

imation to the p.d.f. of5,,, the method has two deficiencies that prevent us from usitoggtice
options: (i) it does not yield an analytical expression for p.d.f., and (ii) it does not provide any
intuition on how to statistically estimate the parameters, andz. We will therefore use the p.d.f.
obtained by numerical inversion ¢f (3]113) only to comparaiast the true Markov tree p.m.f_(3.6)
and the asymptotic approximation that we derive next.

3.3.4 Asymptotic solution in real space

We now derive an asymptotic approximation to the p.d.f. (Reldand Gaspari, 2004, Chap. 5.2)
that uses generating functions. koe C, we define

p(z, k) = ZR(n + 1, k)"
n=0

Az, k) = Z Lin+1,k)2"
n=0

The functionsp and \ are generating functions fdt¢ and L, respectively. Using(3.12), we can
write

] -2 [
- [
- T | O 1] [fh) 619
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Let p be the generating function fd?. Then

p(z, k) = P(n+ 1, k)"

Mg 1[M]2

I
-
r—|o

( (n+1,k) + L(n+1, k))
p(z
A

(2, k)
G k)] (3.15)

Substituting[(3.14) in(3.15) and carrying out the algelrahave

P(1,k) v
(1 — Zm1)<1 — ZTTLQ) (1 — Zm1>(1 — ng)’

p(z, k) =

where
¥ = ROLEK) (1= g")e™* — (1 —q7)e™*) + L(1,k) (g e ™ — gre™F),

independent of. Continuing with the calculation, we getz, k)

P(1,k) Y
(1= z2my)(1 — zmy) (1 —2mq)(1 — zmy)
P(1,k)

ma ma Y my ma
1—2my 1—zm2) my; — Mo (1—zm1 1—zm2)

By definitionA,P(nH, k) is given by the coefficient of* in the expansion qf(z, k). The quantities
m1, my @andP(1, k) are all independent of. ThusP(n + 1, k) can simply be read off froni (3.1.6):

Pn+1,k) = — (PRI = my™) 4 A (mf —m3)) (3.17)
my — Mme

The above quantity represents the Fourier transform of tblegbility of reaching the valugin n

steps and matches the right-hand sidé of {3.13).

Sincem;, mo, andy all depend ori,, we cannot expect to find a closed-form inverse Fourier
transform of [(3.1]7). However, the tail behavior Bfn + 1,3) asn — oo ands — oo can be
determined to a close approximation. To do this, we expand+- 1, k) aboutk = 0 and calculate
the inverse Fourier transform of the leading terms. Theitgpterms represent the behavior in
the tail where the higher spatial derlvatlves}dfn + 1, §) are nearly zero. For justification of this

procedure, we refer td)_(LJth.H
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Letm; (respectivelyms) be the eigenvalue df/ with larger (respectively, smaller) modulus.
We expand these eigenvalues in powers:of

mi = 1+ i(nk’ - §12k’2 + O(k‘g) (318)
mo = (q7 — q7) +iCork — (2k® + O(K?) (3.19)

The expressions for thg,, coefficients are lengthy and shall be omitted. The first stefh®
Markov tree gives

P(1,k) = R(1,k) + L(1.k)
_ qe—i(§0+lu)k + (1 . q>€—z’(5‘0—lu)k‘

Define the constants

__—i(So+lu)k __—i(So—lu)k
Fl—e(f’“) Fg—e(ou),

)

o = (1 _ q+)€il1k2 _ (1 _ q—)eile’ /6 — q—e—ilgk’ _ q+€_il1k.

We expressy = gFia + (1 — q)Fy8 and P(1,k) = ¢Fy + (1 — q)F,. Since|my| > |m,| and
|m1 2| < 1, whenn is large, we get

N 1 .
1
= ———— (¢F(mi* + am}) + (1 — @) Fa(mi™" + Bm}))
my —ms
~mP 7 (qF (my 4+ a) + (1 — ) Fay(my + B)). (3.20)

Let us concentrate on the first term and approximate@(to®). We get

m} qF (my + a) = exp (log ¢ + log(Fymy + Fia) + (n — 1) logm;)
= qexp (log(Fymy + Fia) 4+ (n — 1) logmy) (3.21)

0.2
~ qexp (—ulik — ?1]{2) : (3.22)
To pass from[(3.21) td (3.22), we expand the argument of therential function in powers df.
Note thatF}, m;, anda are all functions of: defined above. The real coefficients ando, are

defined in detail in the Appendix B.1. Proceeding analogofmlyhe second term i (3.20), we
get

. o3
mi (1 — q)Fy(mi 4+ B) ~ (1 — q) exp (—ugzk — 7213) ,

wherepu, ando, are real constants defined in the Appendix B.1. We now expﬁ’(essk) as

2 2
P(n+1,k) ~ gexp (—ulik — %kQ) + (1 —q)exp <—,u2ik: - %kQ) : (3.23)
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Taking the inverse Fourier transform of both sided of (3.2&) obtain the approximate p.d.f.

q (5—u1)2> 1—q ( (§—u2)2)
exp | — + exp| ———=—|. (3.24
\/2no? P < 207 /2702 P 2073 ( )

This shows that the p.d.f. &, is well-approximated by a weighted mixture of two normals.
The first normalV (i, o7) has weight; and the second normal (u,, o3) has weightl — ¢. Let
the p.d.f. of the first (respectively, second) normabbérespectivelyg,), so that we can write

P(n+1,3) ~ fi(5,n+1) :=

fs(Gn+1)=qgn(S,n+1)+ (1 —q)ga(5,n+1). (3.25)

3.3.5 Comparison of the distribution functions for the Markov tree

We now have two continuous densities to compare against #r&dv tree p.m.f. To enable a fair
comparison between discrete and continuous random vasialve compare cumulative distribu-
tion functions (c.d.f.’s). In Fig[—3]3, we plot the c.d.fdbtained from the following probability
mass/density functions: MT, the exact Markov tree p.ri.f8) 3T, the p.d.f. obtained by numer-
ical inversion of the Fourier transform (3]113), and Asyne thd.f. [3.24) obtained by asymptotic
approximation. Table-3l 1 shows the parameters used in theadson in each of the panels.

We see that the FT and Asym c.d.f’s closely approximate tteetedT c.d.f. There is
nothing special about the parameter values chosen forstewdose results are shown—for other
parameter values, the approximations are just as good.

Table[3.1 also shows the error in the ||, norm for the FT and Asym approximations.
The FT approximation is better than the Asym approximatiawever, the deficiencies of the FT
approximation noted at the end of Section 3.3.3 still apply.

Note that we have also conducted tests where we have compparpdces of European call
options computed using the MT distribution against thosemated using the Asym distribution.
The differences are negligible. In what follows, we use thynaptotic normal mixture distribution

(3.23) and[(3.25) to price options.

3.4 Option Price

Pricing a European call option using the normal mixtureriistion (3.24) and[(3.25) is straight-
forward. Suppos& is the time to expiration (in years) ai§- is the random variable representing
the spot price of the underlying asset at time of expiry. Ia section, we will takef;(5,n + 1) to
be the p.d.f. of5y—in other words, we ignore the fact that this p.d.f. is onlyegproximation.

We recall [Z.IB) and evaluate the expected value using the [8.23):

C=e"" /oo(s — K)fy(s,Y)ds, (3.26)
K

wherer is the risk-free rateK is the strike price, and(s, Y) is the p.d.f. ofSy. If dt is the the
duration in years of each time step, then the total numbetepissrequired in the Markov tree is
n+ 1 =Y/dt. We choseit small enough such thaf > 100.
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Figure 3.3: Comparison of cumulative distribution funcgdar MT, the exact Markov tree p.m.f.
3.9), FT, the p.d.f. obtained by numerical inversion of Bwaurier transform[(3.13), and Asym,

the p.d.f. [[3.2¥) obtained by asymptotic approximationbl@&.]1 shows the parameters used in
the comparison in each of the panels.

Panelof Figl3B I, | &1 | L | g |¢" | ¢ | N |[[FT—MT| | [[Asym — MT||«
13.3a 50/02/03/0.7/0.40.8] 150 0.0097 0.0362
13.30 50/02/03/0.7/0.8|04] 150 0.0042 0.0247
18.3¢ 0.05/0.2/0.3|05|0.3|0.7| 150 0.0117 0.0320
18.3d 0.05/04/06|05|0.8|0.7| 500 0.0065 0.0403

Table 3.1: Details of parameters used for each panel if Egjarsd numerical values of the errors.
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To relate the density ofy to the density ofSy-, we start with
_ log s
P(Sy<9)=PE<s) = [ filsm+1)ds

wheres = log s. Taking derivatives of both sides with respectiave see that

fs(s,Y) = %fg(@n +1).

Now we can continue the calculation from_(3.26) and use tlcemiposition[(3.25)

Ce™ = /sfsstds—/Kfs t)ds
— [ oK [ no s

—q/K gl(s,t)ds—f—(l—q)/K gg(s,t)ds—Kq/ %gl(§,t)ds

K
o q }
- K(1- q)/ —-g2(5,t) ds.
K S

The value of the European call option can then be expresgeds ofy, i, 01 ando, as

2

9y Ml) ®(z1)+(1—q)Sy exp (

2

Ce™ = qSpexp ( = ,Uz) O(2) —qKO(25) = (1=q) K P(24),

2 2
(3.27)
where® is the distribution function of the standard normal, and
, 241 K S+ 1 K
T = i + g; + Og(SO/ ), Tiyo = i + Og(SO/ ) (328)
o; 0

fori € {1,2}. Suppose that the underlying stock does not pay a dividehend is also the value

of the American call option on the stock (Bouchaud and bem@.

3.5 Empirical Results

In this section, we price options on 89 non-dividend-pastagks from the S&P 500. Our goal is
to compare Black-Scholes model prices and Markov Tree mat#gpagainst market prices. In
what follows, we use a risk-free rate of interest 0.01, corresponding to the annualized rate of
return for the shortest-term US Treasury bills during thestperiod of testing.
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3.5.1 Parameter estimation

To price options using the MT model, we must statisticallfineate three volatility parameters
(0,07, 07) from data. Assuming we have these parameters, we define

l.=0VAt, L =0c"VAt, Iy,=0 VAL (3.29)

Thenu, d, v, w, z, andy are defined byL(317), enabling us to calculate the risk-aéptobabilities
via (2.6.1), the mixture parametefs;, o;) defined in the Appendix Bl1, and the call option price
defined by[(3.27).

For the Black-Scholes model, we need only estimate one litylggarametew. In our tests,
we estimater using the sample annualized volatilidy the calculation of which proceeds via
standard procedures described, for example@( PODR use the same as our estimate
for o in the MT model.

We use two primary methods to estimate the volatility partaense~:

1. Naive Method. We start with a time series of log return& = {z1,2,,...,2,}, where
z; = log(9;/S;-1) andS; is the adjusted closing price for the stock on dayVe now form
two disjoint subsets of:

ZJF:{ZjEZ’Zj,le}, ZiZ{ZjEZ‘Zj,1<O}

In words,Z " (respectively,Z ) are the log returns on days for which the previous day’s log
return was non-negative (respectively, negative). We toempute

6" = kmean |Z — mean (Z7)], 6~ = kmean |Z~ —mean (Z7)]. (3.30)
Without the scaling factor, the quantity on the right-hand side is the mean absolute de-
viation of Z* or Z~. The factors = /7 /2 is included so that* scales like the sample

standard deviatiOIMMM).

In this method, which is termed “MT naive” in the remaindertiois Chapter, we usé®*

as our statistical estimates foF. Note that past/present options prices are not used at all.
The only market prices that are used are historical adjudtesing prices of the underlying
stock. Hence our estimatés  do not depend on the strike price or time to expiry of the
option that we are pricing.

2. Regression Methodn this method, we start with tables of end-of-day marketgsiof op-
tions. If we are interested in pricing options today, we labkesterday’s tables. We suppose
there is one table for each stock symbol; each table listgr@beu of options with different
strikes and expiration dates. Givén o ", 0 ~) and all the parameters for the options in the
table, we can use the MT model to generate a corresponditegdbimodel prices.

For each stock symbol, we use the algorithm_of (Nelder an@»ﬁb&%) to search numer-
ically for the optimal valuego;", o, ) that minimize the error between the tables of market
and model prices. Through this optimizatianjs set equal to the sample volatility de-
scribed above. We also compute the estimaies](3.30). Invéiyswe obtain for each stock
symbol five values(s,6",67, 0, 0,).

Y * ) *
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Running the same procedure for all 89 stocks yields a matrif size89 x 5. We treat
each column oD as a vector with boldfaced labeis 6,6, 0, 0. Ourideais to use
the information contained ifv to construct a model that uses one or more of the raw inputs
&,6%, andé~ to predict the optimal values, o . In what follows, we use andd to
denote residual errors.

We first fit two ordinary least squares (OLS) linear regrassimdels. In the first linear
model, the response variabled depend only on the raw volatilitg:

ot =[1 &]nt +et (3.31a)

o, =[1 &]ny +e] (3.31b)

Since only one raw input is being used, we labelZhe 1 vectors of regression coefficients
by nf. The adjustedr? values for this model can be found in the “One paramefer”
columns of Tablé3]2.

In the second linear model, the response variad{esiepend on all three raw inpuss 6,
andé —; we now use7§,,E to label thet x 1 vectors of regression coefficients:

6t 67 ni +ef (3.32a)
67 67| n; +e; (3.32b)

* *q+
[
ey
®» @

The adjustedz? values for this model can be found in the “Three paramet&fstolumns

of Table[3.2.

Comparing the adjuste@? values, we see that both linear models perform equally well.
Both models fit fairly well fore, but the fit is poor foro, prompting explorations of
nonlinear regression strategies.

We report here the results of fitting two regression tree riso(greiman et al., 1984). In
much the same way as we have done above, we first try a modeldpahds only on one
raw input and then try a model that depends on all three rautgngr he first model can be
written

F=ui(6)+of (3.33a)
L =Y7(6)+ 67 (3.33b)

,67) + 65 (3.34a)
(6,67,67)+65 (3.34b)

The adjustedz? values for modeld(3.33) and (3]34) can be found in Tableid e “Tree”
columns with respective labels “One parameter” and “Thraeumeters.” The fit for

is much better for the tree models than it is for themodels. Unlike the linear models,
we also see that the model with more parameters fits betteco@te, we should keep in
mind that these statements are made on the basis of in-sgaftegmance. We conduct
out-of-sample option pricing tests below.
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Figure 3.4: We fit three p.d.f.'s to daily log return time sarfor GOOG (left) and DF (right). The
p.d.f’s are a kernel density estimate (KDE), a mixture of twasmals, and a single normal. The
results show that the mixture of two normals more closelycmed the KDE density. See Section
[3.5.2 for more details.

In the remainder of this Chapter, the label “MT Reg” will be usedefer to the MT option
pricing model where the parameters are estimated usingntbe-parameter tree regression
model [3.3%). Specifically, having trained the modglusing the previous day’s option
prices, we evaluate the model using today’s raw estiméaiés,s~. The outputs of the
model,o; ando, are then used as statistical estimates ofindo .

Note that the training of the tree regression model usesptiata from the past. However,
when we apply the tree regression model, we only need mastataf stock log returns in
order to compute the raw inputsands®. Just as in the naive model, the output of the tree
regression model is therefore constant over the strikegsgpidation dates of the options we
will be pricing.

As a final note, we conjecture that there exists a more fundtahenethod for estimating the
parametergéo, o, 0~). The regression approaches considered above should bedvésmattempts
to infer the optimal model from data.

3.5.2 Empirical density functions for stock log returns

Before proceeding with option pricing tests, let us examimeedistribution of log returns for two
stocks, GOOG and DF. For each stock, we assemble a time geoiedaily log returns for the 300
days prior to June 10, 2011. We fit a normal distribution totiime series using the sample mean
and variance of/. We also apply the Expectation Maximization (EM) algoritborfit a mixture

of two normals taZ. Finally, we use kernel density estimation (KDE) to fit a dgng(z) to Z.

In Fig.[3.4, we plot the three densities for GOOG (respelstiiaF) in the left (respectively,
right) panel. For GOOG, the mixture of two normals fits the KBé€nsity better than the single
normal, especially at the peak of the distribution and tiggorenear the peak. For DF, the agree-
ment between the KDE density and the mixture of two normaks/enn more pronounced. The
single normal does not fit nearly as well.
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ol o,

One parameter| Three parameters One parameter] Three parameter
L? Tree L? Tree L? Tree L? Tree

10 Jun 2011 0.7582| 0.9106| 0.7603| 0.9167 | 0.2133] 0.4981| 0.2249| 0.6776
13 Jun 2011 0.7387| 0.8744| 0.7345| 0.8975 | 0.1529| 0.6690| 0.1668| 0.6485
14 Jun 2011 0.7477| 0.8735| 0.7478| 0.8997 | 0.1190| 0.6417| 0.1520| 0.5868
15 Jun 2011 0.7279| 0.8632| 0.7229| 0.9047 | 0.1885| 0.6821| 0.2051| 0.7440
16 Jun 2011 0.7391| 0.8842| 0.7415| 0.9262 | 0.1339| 0.6446| 0.1450| 0.6551
17 Jun 2011 0.7661| 0.8753| 0.7778| 0.8703 | 0.3015| 0.6857| 0.2965| 0.7112
20 Jun 2011 0.7696| 0.8951| 0.7647| 0.9017 | 0.0938| 0.6386| 0.1547| 0.6649
21 Jun 2011 0.7968| 0.9260| 0.7932| 0.9431 | 0.0286| 0.4682| 0.0218| 0.5350
22 Jun 2011 0.7878| 0.9185| 0.7858| 0.9255 | 0.0775| 0.5495| 0.1047| 0.5794
23 Jun 2011 0.8323| 0.9218| 0.8297| 0.9331 | 0.0435| 0.4923| 0.1034| 0.6306

24 Jun 2011 0.8185| 0.9022| 0.8158| 0.9160 | 0.0724| 0.5093| 0.0903| 0.5303

2]

Table 3.2: Adjustedr? values for the linear model§ (3131) and (3.32) are given @nith sub-
columns with respective column headings “One parameted” “dinree parameters.” Adjusted
R? values for the tree models (3133) ahd (3.34) are given in the Subcolumns with respective
column headings “One parameter” and “Three parameterste M@t a reasonable fit far, is
provided only by Tree models; moreover, the Tree model Witbd parameters is the best.

We conclude that, at least for these two stocks, the mixttite@ normal distributions fits
much better than a single normal. We test this for all stockthe following way. For each
stock, we take the time series of daily log returns and fit @)rele normal and (ii) a mixture of
two normals. After fitting, we calculate the BIC-penalizecelikood for both (i) and (ii). The
BIC penalty term accounts for the fact that the mixture has pasameters instead of just two
parameters for the single normal.

We find that for 71 out of the 89 total stocks, the BIC-penalizkelihood is larger for the
normal mixture distribution. From a model selection poihview, this indicates that the normal
mixture is a better choice for modeling log return time serie

3.5.3 Comparing model and market option prices

We now test the models MT Naive and MT Reg, introduced in Se@i8, against both Black-
Scholes model prices and market prices of options. We dellieficom Yahoo! Finance 11 days of
market prices for options on 89 non-dividend-paying stdcisn the S&P 500. In what follows,
we refer to the average of the bid and ask prices as the maiketqgd the option.

For MT Reg, the previous day’s option prices are requiredamtthe model. Hence with
11 days of options data, we can make a fair comparison betmeelel and market prices for the
final 10 days. For these same 10 days, we also compute optaas using the MT Naive and the
Black-Scholes models.

Here is how we compute the error on each day. Suppose we hawdktfig stock symbdl
and we focus on one particular expiration datd hen there will be call options at, saydifferent

strikes; letC™a*et g vector of lengtlk, denote the market prices of these call options. We compute
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All Symbols BIC Symbols

Black-Scholes MT Naive | MT Reg | Black-Scholes MT Naive | MT Reg
13 Jun 2011 0.2026 0.1395 | 0.1267 0.2217 0.1419 | 0.1186
14 Jun 2011 0.2158 0.1394 | 0.1276 0.2378 0.1433 | 0.1225
15 Jun 2011 0.1839 0.1346 | 0.1383 0.1988 0.1352 | 0.1279
16 Jun 2011 0.1732 0.1373 | 0.1327 0.1854 0.1387 | 0.1331
17 Jun 2011 0.1637 0.1411 | 0.1277 0.1741 0.1435 | 0.1293
20 Jun 2011 0.1947 0.1397 | 0.1322 0.2110 0.1408 | 0.1296
21 Jun 2011 0.1977 0.1274 | 0.1214 0.2182 0.1316 | 0.1242
22 Jun 2011 0.1923 0.1294 | 0.1254 0.2129 0.1349 | 0.1291
23 Jun 2011 0.1830 0.1197 | 0.1153 0.2017 0.1234 | 0.1158
24 Jun 2011 0.1685 0.1297 | 0.1348 0.1824 0.1315 | 0.1300

Table 3.3: For each of 10 days of testing, we record the meaii'®?{(¢) for each of three models.
For the columns with heading “All Symbols,” the mean is takeer all 89 symbol®, while for
the columns with heading “BIC Symbols,” the mean is taken aesymbolsi for which BIC
model selection chooses a normal mixture distribution.

All Symbols BIC Symbols

Black-Scholes MT Naive | MT Reg | Black-Scholes MT Naive | MT Reg
13 Jun 2011 0.0188 0.0047 | 0.0043 0.0208 0.0050 | 0.0038
14 Jun 2011 0.0259 0.0064 | 0.0036 0.0287 0.0070 | 0.0030
15 Jun 2011 0.0169 0.0049 | 0.0053 0.0191 0.0052 | 0.0042
16 Jun 2011 0.0162 0.0058 | 0.0044 0.0188 0.0064 | 0.0046
17 Jun 2011 0.0171 0.0082 | 0.0051 0.0201 0.0094 | 0.0056
20 Jun 2011 0.0261 0.0079 | 0.0058 0.0298 0.0085 | 0.0062
21 Jun 2011 0.0226 0.0060 | 0.0051 0.0251 0.0065 | 0.0058
22 Jun 2011 0.0219 0.0058 | 0.0062 0.0246 0.0064 | 0.0068
23 Jun 2011 0.0176 0.0036 | 0.0043 0.0195 0.0039 | 0.0047
24 Jun 2011 0.0126 0.0041 | 0.0051 0.0142 0.0044 | 0.0044

Table 3.4: For each of 10 days of testing, we record the veeiai £M°%\(0) for each of three
models. The column headings “All Symbols” and “BIC Symbolghdte the same set of symbols
described in Table-3.3.
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Figure 3.5: The left (respectively, right) panel sha®! (respectivelyVar[E™9€(9)]) for each
of 10 days of testing and each of the three models B-S, MT RegVAnNaive. See Sectidn 3.5.3
for more detalils.

the mean of the absolute values of the relative errors betwegket and model prices:

market model
e =

market
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where “model” can take the values B-S (Black-Scholes), MT Red®/d Naive. We choose this
metric because we are concerned with the percentage ereate m pricing each option that is
traded. Other error metrics, such as RMS absolute error te ahdlollars, assign lower importance
to mispricing options that are worth less.

We then averag&™!(9, r) over all possible expirationsto obtain the mean errdi™°%{9)
committed by the model for the symbél Finally, we average over all symbafsto obtain the
mean erroz™°% committed by the model. Through all of this, has the units of fractional error,
i.e.,100 x E has units of percentage error.

In the left panel of Fig[(3]5, we pldE™°“! for each of the 10 days of testing, and for each
of the three models. The values that are plotted are alsm giv€able 3.8 under the heading “All
Symbols.” The values that are plotted under the heading “Bi@I®ls” are averages d@f™°%{()
over those&'l symbolsd for which BIC selects a normal mixture distribution for thg l@turn time
series—see Sectign 3.5.2 for more details.

In the right panel of Figl_315, we plot the variancer[ £™°%|(9)] for each of the 10 days of
testing, and for each of the three models. The values thatlatied are also given in Table 3.4
under the heading “All Symbols.” The values that are plotiader the heading “BIC Symbols”
are varianced/ar[ EM°%l(9)] over those71l symbolsé for which BIC selects a normal mixture
distribution for the log return time series.

Fig. [3.3 shows that both the mean and the variance of the MTetisogtrors are less than
the B-S model’s errors over all 10 days of testing. The smallmearly constant variance of the
MT model’s errors hints that the method is robust and would f@ell over a much longer period
of testing. In future work, we intend to pursue exactly sut¢bsi.

Tabled 3.B anff_ 34 also show that, across all days of testiadyiT models perform better
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than the B-S model. Additionally, we see that using the MT nf®ée symbols for which BIC
model selection selects a single normal density does not arty special penalty. However, if one
examines the B-S columns in these tables, one finds that the Bd8lrdoes perform noticeably
worse on symbols for which BIC model selection chooses a mextundel.

Another visualization of the errors committed by the MT Regdedas provided in Figl_316.
Here we have 10 scatterplots, one for each day of testingh Eeatterplot has 89 points of the
form (EBS(6), EMTReY(9)). On all of the scatterplots, the vertical axis has been atettat).5,
which is sufficient to contain all the points. The horizordais has twice the range to account for
the errors made by the B-S model. Clearly, the errors made bylthReg model are much less
dispersed in space than those made by the B-S model. We pia aflslope one to show that the
majority of the 89 points lies below the line, i.e., the MT Regdal’s error is less than the B-S
model’s error for the majority of symbols

The same type of visualization of errors for the MT Naive maderovided in Fig.[3.]7.
Again we have 10 scatterplots, one for each day of testingh Baatterplot has 89 points of the
form (EB-S(0), EMTNave(9)). The performance of the MT Naive model is not quite as shathes
MT Reg model, but the same general conclusions from the pis\paragraph apply.
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Figure 3.6: We give 10 scatterplots, one for each day ofrtgsttach scatterplot has 89 points of
the form(E®S(0), EMTRe9(0)). The majority of the points lie below the line of slope oneeBS
model’s errors are larger and more dispersed than the MT Faaateors. See Sectidn 3.5.3 for
more details.
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Figure 3.7: We give 10 scatterplots, one for each day ofrtgsttach scatterplot has 89 points of
the form (E8-S(9), EMTNave()). The majority of the points lie below the line of slope one.eTh
B-S model’s errors are larger and more dispersed than the Mielfsaerrors. See Sectign 3.5.3
for more details.
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Chapter 4

Large-Scale Empirical Testing

4.1 Introduction

Despite the prominence of option pricing models in the fidldhathematical finance, most such
models have never been subjected to empirical tests. Incddeaic literature, when a model’s
predictions are tested against data, it is typical to tebt the out-of-sample pricing error using
data consisting entirely of option contracts written ormeitthe S&P 500 or S&P 100 indices

7; Nardi, 1996; Rubinstein, 1985; Bates020095; Corrado and 5L, 1996;

. 2010; Zhao and Hodges, 2012). In this Chiaptefocus on the question of which
option pricing model achieves the best single instrumedgés, for options written on indices as
well as individual equities. To answer this question, we adarge database of both individual
equity options and index options to study the out-of-sanhgléging performance of the Markov
Tree (MT) model relative to two popular competing models] ae also substantially improve the
statistical framework for fitting the MT model to observedala

Recent work on both theoretical and empirical propertiehefMarkov Tree (MT) model
have indicated that this model might perform well in largé-ofisample testé_LB_haI_and_Kudﬁar,
2010, -) While the model was originally proposed to exhi account for the short-term
dependence in an underlying asset’s log returns (Bhat an @klﬂﬁ_b) later work established a
link between the MT model and option pricing models based oxtures of normal distributions,
justifying the application of the MT model to all individuaguity options, not just those with first-
order dependence in the log returns of the underlying S{Bdﬁ(and_KumiMQiZ). Empirical
tests of the MT model against the classic Black-Scholes m¢@latk and Scholes, 1973) have
been favorable thus far. The first test considered shortnadeterm European call options on six
different stocks that were components of the CAC-40 index.08€”4 days of testing, the MT
model outperformed the Black-Scholes model in out-of-sanppicing KB.haLa.nd.KumbLZle).
The second test considered American call options on 89 stibeit were components of the S&P
100 index. In 10 days of testing, the MT model outperformeBlack-Scholes model in aggregate
out-of-sample pricing error (Bhat and Kurnar, 2012).

Previous work on the MT model did not explore the differentmoes for fitting the model
to data, instead relying oad hocprocedures based on historical voIatiIitiéS_(B_haI_a.nd_Kbmar
M,M). While these studies did consider genuine eatwiple tests of pricing errors, the
issue of hedging errors made by the MT model was left unaddegrior work on the MT model
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compared its predictions only to that of the Black-Scholesieholeaving out comparisons to
more sophisticated models such as stochastic volatilityetso Finally, while the data sets used in
previous empirical tests were not small, they were not @elas data sets used in, e.g., the implied
volatility literature.

In this Chapter, we make use of two databases of historicadroptices. The first consists
of 14,367 S&P 500 index call options from Jan. 1, 2009 to Dd¢.2810. The second consists of
3,599,468 unique LIFFE Paris equity call options tradedvben 19th September, 2009 and 18th
June, 2012. Using this data, we compare the in-sample gresiors, out-of-sample pricing errors,

and out-of-sample hedging errors made by the Black-SchotetehiBlack and Schole 73),
Heston’s stochastic volatility modm 93), arelMarkov Tree model (Bhat and Kumar,
2010/ 201P).

In order to carry out these tests, we develop three new metlooditting the MT model to
data, a problem that we frame as a nonlinear regressiongmoflhe first two regression methods
we develop are, respectively, underconstrained and owst@ned least-squares methods. The
third method is a robust regression method that uses a pdduwider loss function.

4.1.1 Results

Our primary result is that using any of the three regressiethods developed in this Chapter,
the MT model yields better out-of-sample hedging perforoeatian either the Black-Scholes or
Heston models.

For the overconstrained least-squares method, we devegdogbabilistic simulation proce-
dure to quantify the likelihood that the MT model will outfemm Heston’s model in repeated
future trials. For the same overconstrained method, weyaedhe regression residuals and show
that they fit a generalized hyperbolic distribution with Yieathan-Gaussian tails, partly explain-
ing why the robust regression method for fitting the MT modelds better results than the least-
squares method.

There are a number of other insights that we take away fromamalysis of the data. Regard-
ing the general methods by which option pricing models astete we find that neither in-sample
nor out-of-sample pricing errors by themselves are indieatf the out-of-sample hedging errors
committed by any of the three models: Black-Scholes, HestoMIT. In a similar vein, the results
obtained by analyzing S&P 500 index options do not by theweseindicate what will happen
when we analyze LIFFE individual equity options. Overalhile the volume of data we analyzed
requires a nontrivial amount of computational time to pes;é¢he previous two observations indi-
cate that our efforts yielded different conclusions thaat tf a more typical out-of-sample pricing
test on index option data.

Other points we learned from this study concern the diffeneethods to fit the MT model.
The results obtained with the underconstrained leastrequaethod yield the smallest out-of-
sample hedging errors. However, with this method, the mpdehdmeters are functions of the
option’s strike price and time to expiration, in conflict vthe assumptions that go into the prob-
abilistic derivation of the MT model. The overconstraingtirfg methods (both least-squares and
psuedo-Huber) do not assume that the model parametersdiepahe strike price and time to
expiration. These methods sacrifice a small improvemenedygimg error for parsimony and in-
terpretability.
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4.1.2 Prior Work

The literature on option pricing is vast and has been sutvejsewhere (Bates, 2003; Garcia et al.,
2003; Broadie and Detemp 04). Here we focus our atreatiowork that empirically tests

the hedging performance of one or more of the models studigds Chapter.

To our knowledge, a comparison between the hedging perfuwenaf the Black-Scholes
model, Heston’s model, and any normal mixture distribu{idMD) model has only been carried
out once before (Alexander et al., 2009). The NMD model thas tested, the Brigo-Mercurio
model, is similar to the MT model in that both utilize log retuistributions that are mixtures of
normal distributions. Both models adopt a risk-neutral fearork to derive closed-form option

pricing formulas [(Brigo and Mercurio, 2d02). However, thed@rMercurio model differs from
the MT model in three key aspects:

1. The variances of the mixture components in the Brigo-Méoamodel have no interaction
with one another; each variance is a function of a distina@hparameter. In the MT model,
the variances of both mixture components interact strongly one another; each variance
is a function of the same two model parameters.

2. The Brigo-Mercurio model allows for an arbitrary numbemokture components, while the
MT model allows for only two. When we restrict the Brigo-Mermumodel to two mixture

components, the option price is a function of four model petersi(Alexander et al., 2d09)
rather than three for the MT model (Bhat and Ku 010)

3. The procedure used to fit the Brigo-Mercurio model to dathfisrent from the procedures
described here or in past work on the MT model (Alexander.e2809; Bhat and Kumar,
2010/ 201P).

These differences may serve to explain why the special dae @rigo-Mercurio model tested
in earlier work showed poorer hedging performance thareeitie Black-Scholes model or He-
ston’s stochastic volatility mode[L(Alﬁxa_ndﬂLei hL._jy)Oths contrasts sharply with the results
presented in this Chapter, which show that the MT model’s imedgerformance is superior to that
of the other two models.

Other empirical tests of Brigo-Mercurio NMD models have bearried out I.,
[ZDQ:{%;LAlﬁxa.Ddﬁr{,_ZDﬂ)M. The main focus of such works was sesssthe in-sample fit of the
NMD model’s option prices using either different distrilmurtal assumptions on the components
of the mixture [(B_Ligp_el_dlL_ZDJ):%), or parameterizationshef NMD model that capture long- or
short-term smile effects (Alexandér, 2004). These tests hat addressed the issue of hedging
performance, and have used small data sets consistingiohgptces on one particular day.

In the finance literature, several authors have compareluletbglng performance of stochas-

tic volatility, jump diffusion, and Black-Scholes modelsahdli, 1996, Bakshi et al., 1997; Nandi,
U&%,LB&KMILZ@MMMMMMOH) Wthike literature does include

comparisons between varieties of stochastic volatilitylets, such as models featuring both jump
diffusion and stochastic volatility, it is important to mothat none of these papers include a mul-
tifactor non-stochastic volatility model in the suite of dets being tested. This leaves open the
guestion, addressed in the present work, of whether a aunsitatility model that is more com-
plex than the Black-Scholes model might outperform stoabasetatility models in out-of-sample
hedging comparisons.
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The empirical literature on stochastic volatility modejpitally relies on market data for
options written on the S&P 500 index. One study, focused adgimg exotic options, studies
options written on the EUR/USD Currency Option Volatility Exd(An and Suo, 2009). To our
knowledge, the present study is one of the first to use indaliéquity option data to study the
hedging performance of Heston’s stochastic volatility edod

The literature on empirical option pricing does include kvtirat utilizes large databases of
individual equity options. One of the earliest such wokkgtﬂﬁatgidﬂma applies nonparametric
tests to Chicago Board of Exchange (CBOE) individual equityasptiata to check for systematic
differences between Black-Scholes prices and market prickger study examines a nearly two-
year span of CBOE option data on 10 stocks (Lamoureux and Im#|r399|3) to test implications
of the Hull-White stochastic volatility model (Hull and WHjtg987).

A more recent study analyzed market data for options writterthe S&P 100 index and
the stocks that form its 30 largest components (Bakshile2@03). Using 350,000 distinct option
qguotes (both calls and puts), this study examines the diffsgs between implied risk neutral
distributions for index and individual equity options. Th#ect of variables such as the price-
to-earnings ratio and market capitalization on the skesmoésmplied risk neutral distributions
has been studied using four years of end-of-week optionfdab6 unique firmsmm.,
)—this data set comprises 67,910 distinct option guote

Various studies have used individual equity option datan@alyeze various models for the
implied volatility smile (Chou et all, 2011; Yan, 2011; Changk, 2012)—these studies each use
between 14,120 and 400,000 distinct option quotes. In thégoh, we analyze a data set that is an
order of magnitude larger than the largest of the data setsawe seen mentioned in the literature.

In all the studies we have reviewed that use individual goojition data, none compute
the hedging errors made by option pricing models. At the same, the use of large data sets
spanning years enables one to uncover long-term trendsdieganodel performance, trends that
would have been missed by those using smaller data setsrmgeiorter periods of time.

4.2 Option Pricing Models

For a given option, leil’ denote the strike pricd, the time in years to expiratiom,the risk-free
rate of interest, and, the spot price of the underlying asset. We denote the optime jas a
function of the formF'(x, 3), wherex = [K, T, r, Sy] and3 is a vector of model parameters that
must be statistically estimated from data. Typically, thesdel parameters include one or more
volatilities.

We define moneyness as= S,/ K, and maturity as the time to expiration in days.

Let us now review three classes of models. All models that iseuds treat- as constant
over the life of the option.

4.2.1 Black-Scholes

The underlying asset pricg at any timet is assumed to follow the SDE

dSt = /LStdt + O'Stth, (41)
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wherep ando are constants and’; is the standard Wiener process. The annualized voladility
assumed to be constant. The Black-Scholes European calhqpice is

FP(x, %) = ®(d1)Sy — ®(dp) K exp(—rT), (4.2)
dy = log(SO/KL% AT 4 VT (4.3)

where® is the standard normal cumulative distribution function.
The Black-Scholes model is a one-parameter model glith= o.

4.2.2 Heston

In Heston’s stochastic volatility (SV) model, the undenlyiassetS; is governed by the coupled
system

S, = rSdt + /0, S, dW; | (4.4)
dv, = k(0 — v)dt + €/, dWY, (4.5)

whereuv, is the instantaneous variance of the asset pidld€; anddW,’ are Wiener processes with
correlationpdt, 0 is the long variances is the rate at whichy, reverts tod, and¢ is the volatility
of the volatility. Heston’s model is a five-parameter modé&hvg®Y = (v, p 0,r,&). The closed
form European call option price for Heston’s model is (Giltid Schumann, 2010):

FV(x,8%V) = SyP, — Ke "' Py, (4.6)
where
oo —iwlog K . o] —iwlog K
P1:1+l/ Re ¢ : ¢(w ) dw, P2:1+l/ Re w dw
2 7w iwp(—1) 2 7w iw
4.7)
P(w) = etele’ (4.8)
and

A =iw(log So +rT')
— gop—dT
B = Or ((Ii — péiw — d)T — 2log (IL)>

&? 1—go
W(k — p€iw —d)(1 — e
o Bl gt A
1 — goe—dT
d =/ (piw — )2 + €2(iw + w?)
g:m—pfiw—d
T k= pliw+d

51



4.2.3 Markov Tree

Fork € {—1,0,1}, let Z, be a discrete random variable that achieves the outcdipesi; } with

probabilities{g:, 1 — ¢x}. Then, as originally proposed (Bhat and Kumar, 2010), the MiEeh
assumes the underlying asset pritefollows the persistent (or delayed) random walk

n=1:logS; =logSy+ Z (4.9a)

Zl Sn Z Sn—l

. (4.9b)
Z_1 Sn < Sn—l

n>1:logS,1 = logSn+{

This process generates a risk-neutral probability masstifum (pmf); using asymptotic analysis
in an appropriate continuous-time limit, this pmf can beragpnated very well by a mixture
of normal densities, yielding the following expression tbe price of a European call option

(Bhat and Kumar, 2012):

2 2

o 0.
FMT(X,,BMT)GTT _ QOSO exp (71 + ,Ul) (13(3:1) -+ (1 — C]O)So exp (72 + ,LLQ) (I)(.Qfg)

— @K ®(z3) — (1 — qo) KP(x4), (4.10)

where 2 1+ log(Sy/K log(Sy/ K
T = i + g; + Og( 0/ )’ Tivo = i + Og( 0/ ) (411)
o0; g;
for i € {1,2}. In this Chapter, we tredf (4.1.0) as the MT model’s optionearic
The MT model is a three-parameter model with" = (0, 0, o_). The parameterg,, Iy,
o1, ando, that appear either in the stochastic process (4.9) or onighémand sides of(4.10)
and [4.11) are all functions of the components38f' —see AppendiXBl1 for detailed algebraic

expressions of these quantities.

4.3 Regression

We now describe how we use option price market data to fit tireetinodels described in Section
[4.2. Suppose that on dayve are interested in options on an underlying stock with syirth

Let Vo, denote the column vector of all option prices associateti #ie underlying®
on day:. Each row oflj ; corresponds to a particular option contract, and each sotract
corresponds to a row vector of the fODtﬁ’i = (K, T,r,Sy). Let X® denote the matrix obtained
by stacking these row vectors vertically, i.e.,

wherev = |Vg |, the length ofVs ;. Let1 € R” denote the column vectdr = (1,1,...,1)T,
wheret denotes transpose. Then, once we fix the syndbahd the day, the third and fourth
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columns of X® are, respectivelyy1 and Sy1; this is because the spot price of the underlying
asset depends only éhand:, while the risk-free rate of interest depends only;on

For the remainder of this section, we omit tBeand: superscripts onX andx;—these
superscripts will be used in Sectibn}4.4.

For the data matriXX', and for each option pricing modél(x, 3), we let denote'( X, 3)
denote the result of applying(x, 3) to each row ofX:

FX.8)=| .
F(x,,0)
We can then formulate the nonlinear parametric regressioiolgm
Vo= F(X,B) +e¢, (4.12)

wheree is a column vector of residuals. The least-squares solofitinis regression problem is
1y
B = argmin —€'e. (4.13)
3 2

We now explain how special cases bf (4.12) can be used to fit @athe option pricing models
presented in Sectidn 4.2.

4.3.1 Black-Scholes

Empirical studies reveal that allowing the regression faciefht or volatility 5% = ¢ to depend
on strike and time to expiration does not improve the hedgerdormance of the Black-Scholes
model K&akshLel.élL.lQ_ 7). For this reason, we téke to be all available call option prices for
symbol® and dayi, with X as the corresponding data matrix. We then set

Vo= F®(X,B) +e (4.14a)
1
B = argmin —e'e, (4.14b)
£€[0.05,0.95]

leading to a volatility that is independent of strike anddito expiration, a commonly used ap-

proach in prior empirical studies (An and Sluo, 2009; Bakshil€f.997). To actually carry out the

solution, we use the R functiapt i m ze, which combines golden section search and interpola-

tion (R Core Team, 2012).

4.3.2 Heston

Sinced®¥ is made up of five parameters, by analogy with linear regoegsioblems, one does not
expect the solutiori (4.13) to be unique unléss contains at least rows. Therefore, a commonly
used technique is to také; ; to be all available call option prices for symb®land day: in a
particular data set, so that the number of rews always more thaf. The net effect of this is to
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compute via[(4.13) a set of five parameters that do not depeidecoption strikek” and time to
expirationT’, i.e.,

Voi=FV(X,B)+¢ (4.15a)
1

,BSV = arg min —ele. (4.15b)
ges 2

HereS = {(vo, 0, p, k,&) € R® | 0.05 < vp < 0.95, 0.05 < 6 < 0.95, —0.9 < p < 09,1 <k <
6, 0.01 <& < 1.11}.

The main caveat of applying this procedure lies in the \WwaldB) is computed. The analyti-
cal gradient of the objective function—specificali¥ —is not known, and numerically computed
gradients are computationally expensive and inaccuratis.i¥ because the evaluation 6" re-
quires the numerical computation of an oscillatory intégreor these reasons, derivative-free
rather than gradient-based optimization techniques ad tssolve for3 dQIJJJ_a.nd_S_Qhumadn
2010] Mikhailov and Ngel,[200B).

Two popular derivative-free techniques that are used tees@l.13) for Heston’'s model
are the Nelder-Mead algorithm_(Fiorentini et al., 2002; W&805) and differential evolution
(Gilliand SQhumaer_O_iLO) Using artificially created optdata from a set of known parameters,
(Gilli and Schumarin, 2010) shows that differential evaintoutperforms other derivative-free op-
timization techniques. We choose the Nelder-Mead algorifibr two reasons. First, differential
evolution requires a prohibitively large number of evailoiag of the objective function to achieve
reasonable accuracy for a large-scale empirical test. rfeecur tests on a subsample of LIFFE
option data reveal that using Nelder-Mead with 500 iteregicesults in better convergence than
differential evolution. The specific implementation of tNelder-Mead algorithm we use is pro-
vided by the R functiompt i m(R Core Tean, 2012).

4.3.3 Markov Tree

We now describe three methods to fit the MT model to data. A#e¢hmethods are implemented
using gradient-based optimization, leveraging the smdh of the MT model’s option price with
respect to the parameteB8'". For all three methods, we defer any discussion of impleatimt
details to Sectioh 4.3.3.

Overconstrained L?

The first method we consider is analogous to the procedurgiled above for Heston’s stochastic
volatility model. Using the full set of market option quotes symbol® and day:, we formulate
the regression problem and least-squares solution as

Voi=F"(X,0) +e¢ (4.16a)
BMT = arg min leTe, (4.16b)
BeB 2

whereB = {(z',2?,2%) € R* | 0.05 < 27 < 0.95, j = 1,2,3}. This formulation yields MT
volatilities that do not depend on option strikes and exjredates.
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Overconstrained pseudo-Huber

L(z) :5( 1+ (%)2—1), (4.17)

adapated from the pseudo-Huber loss functm 20With this loss function, we can
formulate an alternative solution to the regression pmb{@.164), one in which we replace the
squared error loss function with(z):

Consider the loss function

pMT = ar% rgin L(e), (4.18)
€

wheree is defined as if(4.16a). The loss functibrontains a parametér for our empirical tests,
we setd = 0.01, in which caséel.(z) is a smooth approximation to the absolute value function
Note thatlims_ .o L(x) = |z|, pointwise inx. Becausd. is less sensitive to outliers than the squared
loss, the solutiorB" may be thought of as a robust solution to the regression @nol.165).
The smoothness df enables us to apply gradient-based optimization techsitpusolve[(4.118).

Underconstrained L2

We consider a special case bf(4.12) in which we use only oweofdhe data matrixX and the
corresponding row of the vectdp ;:

Vo.l; = FM (x;, B + e (4.19)

Sinceﬁ?ﬁ)T is a vector of three parameters, this problem is undercaingt, i.e., the sef;, =

{B | Veul;, = FMT(x,,B)} is infinite. For this reason, we treat the nonlinear equatisra
constraint, and solve the problem

B = angmin 18— b, (4.20)
S

whereb = (0.5,0.5,0.5). This formulation yields a strike- and expiration-depemdset of MT
volatilities.

Recall from Section 4.213 that the parameter ve@0f can be used to calculate three risk-
neutral probabilitiegg.},_ ;. LetQ = {3 e R* |0 < ¢(B) < 1, —1 < k < 1}. Forall
index options considered in this study, when we find the &miufd.20) and insert it intd (4.19),
the residual errof is zero to machine precision. We also find tﬁ%’t)T € Q, i.e., theg,’'s are valid
probabilities.

For approximatelyl0® individual equity options considered in this study, sotyi@.20)
yieldsﬁ?g)T ¢ Q. For only these options, we solve the following problemeast of [4.2D):

B = arg min 18 — blf5. (4.21)
€/

In practice, this yields solutions that satisfy both #iegand Q constraints.
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Implementation Details

To obtain either of the overconstrained solutidns (4. 16b{dl8), we use the L-BFGS-B algo-
rithm ¢B¥Ld_el_a|.l_19_95). This is a quasi-Newton solver thsg¢sia limited memory (L) version
of the BFGS update formula, while also handling box constsgiB). Our use of a quasi-Newton
solver means that we avoid calculating the exact Hessidreasbjective function. The L-BFGS-B
implementation we use is built into tlogt i mcommand in R (R Core Team, 2012).

To obtain either of the underconstrained solutidns (4.20 , We use the package
nl optr MM) an R interface to thd opt package@é%L@lS). Specifically,
we use this package’s implementation of an augmented Lggnanmethod|(Conn et al., 1991;
Birgin and Martinez, 2008).

For all of the codes/algorithms just mentioned, we passdstned functions that use exact
formulas to compute the gradient of the MT option pric¥™ with respect tg3™™. This gradient
is given in detail in Appendik Bl2.

For the overconstrained methods, our results show that atrguated optimunB™™, the
gradient of the objective function is near zero. We also firat either the Hessian at the optimum
is positive definite, or the computed optimum lies on the loauy of the feasible sdi.

For the underconstrained methods, we rely on the optinsizadigorithm to single out a
unique element of the feasible set. That is, we are lessestted in whether the algorithm con-
verges to a local minimum, and more interested in how welcthestraints are satisfied. In all of
our tests, the solution of eithdr (4]120) br(4.21) yieldsvéid risk-neutral probabilitiegq,. };_
and (ii) residual errors in_(4.19) that are zero to at least flecimal places, sufficient for the
purposes of this study.

4.4 Tests

In the previous section, we described five procedures farditin option pricing model to market
data: one Black-Scholes procedure, one stochastic votgiiocedure, and three MT procedures.
All five procedures can be viewed as special casds of](4.1#¢hwfor an option on the underlying
O that is being priced on day reads

Vo = F(X% B°) + co.. (4.22)

Here we have highlighted the fact that the data makfixthe regression coefficients, and the
residuals all depend or® and:. In what follows, we refer tee ; as thein-sample pricing errors

4.4.1 Out-of-Sample Pricing Error

Having computed@3®*, we can use this vector of regression coefficients to prid¢moeg on the
underlying® on day: + 1. This leads to the one daut-of-sample pricing errovector

€o,i+1 = Vo,it1 — F(XG’Hl’ 56’1)- (4.23)

Note thatlg ;1 consists of all available call option prices in our data setfay: + 1 and symbol
©. The data matrixX ®*! is such that the risk-free interest rate and spot pricesarermt as of
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day:+ 1, while the strikes and the expiration dates are read frorsdh@ption contracts available
on dayi + 1 for symbol©.

4.4.2 Out-of-Sample Hedging Error

Hedging is the process of creating a risk-free portfoliosisting of risky assets. Owing to trans-
action costs and other financial considerations, a simpdepaactical form of such a portfolio is
one which uses the minimum number of financial instruménlkiBi&ld.LlQﬂ?). Hedging with
a portfolio consisting only of an option and shares of itsemdng is commonly referred to as
single instrument hedging.

Consider a portfolio created by selliogecall option at the pricéfé‘ff and buyingn shares
of it's underlying at the price af, per share. The residual cash obtained through this traoeaatt
timet = 0 on day: is 7r = VéKZT —nSp. The value of this portfolio depends on the market price
of the call option and the market price of its underlying. Aanbe in the price of the underlying
at timet = At leads to a change in the call option price and the value of dinéigio. We seek a
portfolio whose value is insensitive to small changes inuhéerlying price. For the BS and MT
models, this can be achieved by choosinguch that

KT KT
0776724 (‘3\/@’1-
= —n =0.

0S50 0S50

Approximating the market pricb’@ " by the model price(x; it , 3971, we have

AVET  gp(x® i gei-1
n— ©,i ~ ( ] ,3 ) . (424)
0S5 0S5

With thisn, the portfolio described above with valtzté T is often called alelta neutralportfolio.
For the MT model, we report the exact formsroin Appendl)d:B__._$ Since the only stochastic term
in the Black-Scholes and MT models is the stock price, a dedtaral portfolio can be created
using a single option and its underlying. This cannot be done stochastic volatility model,
as the value of the portfolio is driven not just by the stocikg@ibut also the stochastic volatility.
Nevertheless, for Heston’s model, and for a portfolio csinsg of a call option and shares of its
underlying, we can choose such that the variance of the portfolio is minimiz

). This is called a minimum variance hedge.

Equation [(4.21) represents continuous rebalancing—thebeu of shares have to be con-
tinuously changed. As this is not possible, in practice, dfplo is rebalanced (equivalently, is
adjusted) only at discrete times, typically each day at titea# trading.

To evaluate the hedging performance of different modelsfinseconstruct a risk-free port-
folio at timet = 0 (day) consisting of an option (with strik& and time to expiratior?’) and
n shares of its underlying (with symbél). To calculate this:, we use[(4.24) with3 computed
using data on day — 1. We invest the residual cash generated into a risk-free beetdring at
timet = At on dayi + 1. We assess the value of the stock and option at timeAt (dayi + 1)

by closing the portfolio, thereby generating a cash valueX, — ngfl At Maturity of the bond

generates anothegfe”m on day: + 1. The hedging error of this self financed portfolio created
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on day: and liquidated on day-+ 1 is then
S = n8 e A — VI 4+ niodaSar. (4.25)

This procedure of using data on day- 1 to compute3 andn, form the portfolio on day, and
liquidate the portfolio on day+ 1 follows prior work (Bakshi et all, 1997).

4.5 Data

4.5.1 LIFFE Paris individual equity options

Market data on different LIFFE contracts traded electralhydas available for download from the
websiteht t p: //ww. | i ffe. conf dat a/ . Using a Python script, we download data every-
day for all contracts traded on the LIFFE exchange and staclaiMySQL database. In this way,
we build sixteen different databases based on differenketsiand different contract types. To
keep the analysis feasible, we consider only the Paris {E@ptions data for this study. We con-
sider all options contracts written on all stocks on the [ERFaris Equity Options traded between
September 18, 2009 and June 18, 2012, encompassing 70¥gtdadis worth of data. To further
reduce the size of the data set and keep computational tantakbie, we only consider call op-
tions traded within this period, leaving 7,361,451 unigp&gans. We then apply standard filtering
techniques to improve the fitting process for different nisdand to remove the bias involved in
pricing options that are not traded. Specifically, we remiowm our data set

e short-term options, i.e., options with maturity stricthsk than seven trading days,
e deep in-the-money options (with moneynésg X' > 1.4), and

e deep out-of-the-money options (with moneynggsi < 0.8),

leaving us with 3,483,461 call options in the LIFFE data sktis number of unique options is
approximately 100 times greater than the number of optioia$yaed in prior empirical hedging
studies ' X i X djgesi)zo

For this data set, the option price that we use is the LIFFEese¢nt price. Settlement
prices are determined using the trade-weighted averagkeiaalue of the option together with
a variety of technical considerations spelled out in LIFEEngines 6). Using these
settlement prices avoids pitfalls associated with daibgitlg prices that have been documented in
the literaturel(Rubinstein, 1985).

In Table[4.1, we report the number of options on (i) all 118FHE-option symbols and (ii)
25 LIFFE option symbols with non-dividend-paying undenmtyiin our database categorized by
moneyness-maturity. In Taldle #.2, we also report the aegpaige of options in each of the above
categories. We note that, for all moneyness-maturity caieg, the average price of options on
stocks that do not offer dividends is smaller than the avepage of all options.

4.5.2 SPX options

CBOE market data on traditional European style options on 8 500 index for 2009 and
2010 is available fronnt t p: / / ww. del t aneutral . com Options on the S&P 500 index

58



have been considered in empirical studies before (Bakshi, 41997, 2000, Nanfi, 1996) and are

known to be the benchmark options to test European optiaringrimodels (Rubinstein, 1985;
i,). Again, we follow standard filtering technig 2); after removing alll
put options, we further remove

e short-term options, i.e. options with maturity stricthgéethan seven trading days,
e deep in-the-money options (with moneynésg K > 1.3),

e deep out-of-the money options (with moneyn8gsk < 0.8), and

e options with zero trading volume,

leaving us with an overall SPX data set made up of 5,683 caibiop for 2009, and 14,367 call

options in 2010. This data set consists of bid and ask prifm@kwing standard convention

(Bakshi et al.| 1997; Kaeck, 2d12), we take the midpoint oftiteand ask prices to be the the
market option price.

We report the number of SPX options categorized by moneyargssnaturity in Tablé 413.
Here, we note that after filtering, there are no long-terniomst(i.e., with maturity exceeding0
days) in 2010. In Table 4.4, we present the average price & 53 index options categorized by
moneyness and maturity.

4.5.3 Interest rates

We use 90-day LIBOR rates as our proxy for the risk-free ratetefest. The risk-free rate for any
option contract dated in any given month is assumed to be(dag LIBOR rate at the beginning
of the corresponding month.

45.4 Dividends

During the period of study, 2009—-2012 for LIFFE options af@2-2010 for SPX options, divi-
dends paid by either LIFFE or S&P 500 equities were eithey penegligible.

4.6 Results

In this section, we present results on four data sets:
e all LIFFE data as described in Sectionl4.5—see Tdblés 4.8&hd

e the subset of the LIFFE data consisting of options on 25 nvidehd-paying stocks—see
Tabled 4.6 and4.10.

e SPX data from calendar year 2009—see Tablgs 4.7 and 4.11.
e SPX data from calendar year 2010—see Tablés 4.8 anil 4.12.
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Our primary result is that, for any of these data sets, anh@frégression procedures for fitting
the MT model described in Section 4.3.3 yield smaller ousarinple hedging errors than either
Heston’s model or the Black-Scholes model.

All entries of Table§ 4]5-4.12 are computed in the followimgy. First, we compute the
appropriate error (i.e., in-sample, out-of-sample pgciout-of-sample hedging) for each option
in the indicated data set. We then bin options into moneymessirity categories. We include
“Overall” bins that denote either all options, options kedronly by moneyness, or options binned
only by maturity. Finally, we calculate the mean absoluterein each bin. All LIFFE errors are
in Euros €), while all SPX errors are in US dollars ($).

Note that an option must exist in our data set on both dagd day: + 1 in order for a
hedging error to be calculated.

4.6.1 Comparison of different option pricing models

In our first set of results, we compare the Black-Scholes mddeston’s stochastic volatility
model, and the MT model using the overconstraiféditting procedure from Sectidn 4.3.3.

In-Sample Pricing Errors.  The first panel of Table 4.5 shows the in-sample errors fahadle
models on the entire LIFFE data set. Heston’s model featanesverall error€0.1981) that

is €0.02 less than the overall error committed by the second best mtideMT model. This
IS not surprising; in the framework of nonlinear regressiome expects a model with two extra
parameters to provide a better in-sample fit.

Note that the MT model outperforms Heston’s model for loegyt options, i.e., those with
maturity greater thaih80 days. Two possible causes for this are (i) the necessitying aerivative-
free optimization to fit Heston’s model, and (ii) the posttpithat the MT model fits option data
on dividend-paying stocks better than Heston’s model.

We contrast the results on the entire LIFFE data set withiteesn the subset of the LIFFE
data consisting of options on stocks that pay no dividendnfRhe first panel of Table 4.6, we see
that Heston’s model performs much better than both the B&aticles and MT models, beating
the MT model in overall performance by abett.05. Comparing the in-sample portions of Tables
4.3 and_4.B, we see that the three models reduce their oeeraik by 44.37% (Black-Scholes),
46.16% (MT), and 66.18% (Heston). Based on this, we hypatbekat Heston’s model performs
better when there is complete information about the maekgt, when dividend data is available.

Turning to Tableg 417 arid 4.8, we see one of the reasons fainvgowith a large database of
individual equity options: the results for index options chiffer. Looking at the overall in-sample
errors in these tables, we see that Heston’s model outpesftire MT model for 2009, but that the
MT model outperforms Heston’s model for 2010. Unlike theuftssfor LIFFE options, the SPX
option results show that Heston’s model fit long-term ogtiparticularly well for both 2009 and
2010 index options. This last result confirms tests carrigdrothe litearturel (Bakshi et al., 1997).

Out-of-Sample Pricing Errors.  The second panels of Tableslf.514.8 show out-of-samplegric
errors for each of the four data sets described earlier.

For LIFFE equity options, whether restricted to non-dividepaying underlying or not, He-
ston’s model yields smaller overall errors than either thecBIScholes or MT models, and yet for
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SPX index options for either 2009 or 2010, the MT model’s allezrrors are the smallest. We
again see a difference in model performance between indkindividual equity options.

Itis clear from the results that all models’ out-of-samplieipg errors exceed their in-sample
pricing errors; for the full LIFFE data set, specificallyetbverall out-of-sample errors are larger
by 1.4%, 2.3%, and 4.8% than the overall in-sample errorgh®Black-Scholes model, the MT
model, and Heston’s model, respectively. For the 2009 SRX skt, the model-wise increases
in overall pricing errors from in-sample to out-of-sampdsts are 23.53%, 54.11%, and 139.8%,
while for the 2010 SPX data, these model-wise increases2a®®%, 23.27%, and 27.94%.

There are two trends that we note here. First, the out-optanesults for all models are
much closer to the in-sample results for LIFFE individualigégoptions than they are for S& P
500 index options. This shows, again, that it is useful tbdeson pricing models on both types
of data sets.

Second, for both LIFFE and SPX data sets, Heston’s modelistenfly has the largest
percentage increase in overall pricing errors from in-dartgout-of-sample tests. This leads us
to hypothesize that Heston’s model may be overfitting; we fimath stronger support for this in
our hedging results below.

Since LIFFE and SPX results do not show consistency in thectexh of out-of-sample
pricing errors as a function of model complexity (i.e., nianbf parameters), we turn to another
out-of-sample test to determine if Heston’s model eitherfits the data or is truly superior, as the
in-sample results indicate.

Out-of-Sample Hedging Errors. Out-of-sample hedging errors are displayed in the final lsane
of Tabled4.8-4]8, for each of the four data sets describeigea

On the entire LIFFE data set, the MT model’s overall hedgimgrs are 41.88% lower than
that of Heston’s model, and 301.7% lower than that of the Backoles model. For the subset
of LIFFE data consisting of options on non-dividend-payurglerlying, the MT model’'s overall
hedging errors are 41.32% and 296.84% lower than for Hestmiwdel and the Black-Scholes
model, respectively. For SPX options from 2009 (2010), tHE mabdel’s overall hedging errors
are 57.68% (69.47%) and 86.5% (71.13%) smaller than whatngefdr Heston’s model and the
Black-Scholes model, respectively.

There are several insights that we obtain from these reskitst, and most importantly,
neither the in-sample nor the out-of-sample pricing pentomce is indicative of the out-of-sample
hedging performance of an option pricing model. Second,reyradl the performance metrics
considered, the hedging errors seem to be least affectedttacoounting for the dividends in the
option pricing models—this is indicated by the consisteatyhe hedging results across Tables
4.5 and 4.b.

We note another consistent trend in the out-of-sample hedgisults in all four Tablds 4.5-
4.8. For the MT model, if we bin errorsnly by maturity, then short-term options (i.e., with
maturity less thaie0 days) yield the best hedging performance; similarly, if wedrrorsonly by
moneyness, then the most out of the money options (i.e.,with 0.94) yield the best hedging
performance.

Next, we visualize and assess hedging errors in a differapt ®uppose our data set is one
of the four data sets described at the beginning of this@eckor a given stock symbé) and a
given dayi, we sum theaw hedging errors due to all different options available on day the
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underlying®. This yields a hedging error for symb6él on day:. We sum ovel©, and thereby
obtain a time series aharket hedging errots As there are four data sets, we obtain four time
series for each of the three models that were tested.

In Figure[4.1, we plot these four time series for Heston’s ei¢dlue) and the MT model
(red). The time series for the Black-Scholes model is omitbetause it increases the vertical
scale of the plot to an extent that we miss details in the bheerad curves. The figure indicates
that the red curves are enveloped by the blue cruves, me#mh@n each day, it is usually the
case that the market hedging error is larger for Heston’saibdn for the MT model. For the full
LIFFE data set (respectively, the non-dividend-payingREFRdata set), the MT market hedging
error is smaller in absolute value than that of Heston’s mtmte603 (579) out of 705 days. For
the SPX data set, and for both 2009 and 2010, the MT markefmgédgor is smaller in absolute
value than Heston’s model’'s market hedging error 269 day®foa total of 354 days. Again we
see remarkable consistency across all four time seriedl ioua cases, the empirical probability
that the MT model yields smaller hedging errors is betw@&t and0.85.

Apart from showing that the MT model outperforms Hestorfgse plots also reveal how
the model’s daily hedging errors vary on a daily basis. Thisation has not been plotted before,
even in large-scale empirical studies. The plots clearbnstinat there are several days, e.g., near
09-2011 for the LIFFE plots and 01-2009 and 05-2010 for the §iBts, where the market hedging
error for Heston’s model is much larger than for the MT mod#h.the other hand, when Heston’s
model has a smaller hedging error than the MT model, therdifiee is small. These fine-grained
results are important from a risk management perspectsmeatally if one seeks a model that
never “blows up.” An overly narrow focus on errors averageiss time obfuscates this point.

We form two overall conclusions from the out-of-sample hedgesults. First, because
the MT model consistently produces the least out-of-sarhpbiging errors, both in the overall
categories and in almost all moneyness-maturity bins, thenddel should be used for risk man-
agement purposes rather than the other two models studesshn8, the MT model achieves its
superior hedging performance with two fewer regressiorffictents than Heston’s model. While
the in-sample pricing errors decrease as a function of namdeplexity, the out-of-sample hedging
errors are minimized by a model with three parameters (Miflerathan five (Heston), leading us
to believe that Heston’s model does indeed overfit the data.

4.6.2 Performance of MT model regression procedures

Next, we compare the three methods for fitting the MT modetuesd in Sectioh 4.313. The
layout of results in Tablgs 4[9-4]12 follows that of Tallg8{4.8; the main difference is that the
three models considered previously are replaced by thréleote for fitting the MT model: the

overconstrained.? method, the overconstrained pseudo-Huber method, anchtteraponstrained

L? method.

In-Sample Pricing Errors. In-sample pricing errors for each of the four data sets desdr
above are shown in the first panels of Talbles(4.934.12. Therandstrained.> method has resid-
ual errors that are zero to four decimal places; these val@gesmitted here. Focusing our attention
on the two overconstrained methods, we see that in overalt &r the four data sets consid-
ered, the pseudo-Huber method is better than thmethod by€0.0094, €0.0067, €0.0336, and
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€0.049. However, examining each individual moneyness-matuiity lwe see that th&> method
has a smaller error for many bins, indicating that neithethoe is clearly superior in terms of
in-sample fit.

Out-of-Sample Pricing Errors. In the second panels of Tables14.9-4.12, we present out-of-
sample pricing errors for the three regression methods aoll ef the four data sets. The un-
derconstrained.? scheme clearly outperforms all other regression procedareoss all four data
sets. This is true not only for overall errors, but is als@tfor nearly every moneyness-maturity
category. Moreover, comparing the performance of the wmifestrained.? MT method to that of
Heston’s model on each of the four data sets, we see that thendtfiod consistently produces
significantly smaller out-of-sample pricing errors.

These results alone justify our inclusion of the underamised > method. While strike-
and maturity-dependent volatilities are inconsistenhwite assumptions in the MT stochastic
model, they do lead to the smallest out-of-sample erroremFa practitioner’s point of view, we
expect the underconstrainédd method to be the method of choice for fitting and using the MT
model.

Between the two overconstrained methods, the pseudo-Hubtrooh has smaller overall
errors on the LIFFE data sets and on the 2010 SPX data set thailL> method has smaller
overall errors on the 2009 SPX data set. For LIFFE optiongeifocus our attention on short- and
medium-term options, the pseudo-Huber method performisewatily better than thé? method;
the L2 method is the superior method for long-term options. Thémsements do not carry over
to the SPX data set, indicating again the difference betwesia for individual equity options and
index options.

Out-of-Sample Hedging Errors. The third panels of Tablds 4[9-4]112 show the out-of-sample
hedging errors for each of the four data sets and each of tee thgression methods. As with the
out-of-sample pricing errors, the underconstraif@dnethod yields smaller overall errors across
all four data sets.

The overall hedging errors for the overconstraifiédnd the overconstrained pseudo-Huber
methods are greater than the overall hedging errors forraodstrained.? method by 10.65% and
9.69%, respectively, for 2009 SPX options and 29.34% an882%8, respectively, for 2010 SPX
options. For both LIFFE data sets, the underconstraiitechethod yields overall errors that are
between 15.6% and 16.5% smaller than with either of the owvestcained methods.

These results show that the underconstraihédegression MT method produces the least
out-of-sample hedging errors across all data sets, notopestall, but also in each individual
moneyness-maturity bin.

Following this procedure, a practitioner can choose a wnigption with which to form a
risk-free portfolio, and then estimate the MT model pararsetor this particular option using the
method outlined in sectidn 4.3.3. This circumvents the rteembllect data for all options traded
on a given day for a given symbol, a requirement for the ovesttained methods.

From these results, we also note that the overconstraineadpsHuber method slightly
outperforms the overconstrainéd method, in the overall category, for all four data sets.

The results help us draw two final conclusions. First, fronraciical perspective, the un-
derconstrained.? regression MT model provides the least out-of-sample megdgirors. This
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procedure allows the MT model parameters to depend on the stnd maturity of the option,
leading to an increase in the number of model parameters.eWl@lhave conducted large scale
out-of-sample empirical tests to guard against drawinglkemmons from the in-sample fit of this
method, we note that this procedure does not conform with Mlehassumptions that do not
allow the stock price process, and, in turn, the model parersigto depend on option’s strike and
maturity. Second, the overconstrained pseudo-Huber rdgtiio example of a robust nonlinear
regression procedure, produces the least out-of-samgigirieerrors among all overconstrained
regression procedures carried out in this Chapter. Thigssgn procedure is consistent with MT
model assumptions, and does not require more time to runtbieastandard overconstrainéd
method. While the improvement over the overconstraihéanethod may be slight, the results
lead us to hypothesize thedmerobust regression technique for fitting the MT model maydyeel
much larger improvement over ti& method.

4.7 Error Analysis

In order to achieve a better quantitative understandindgnefsuperior hedging results displayed
by the MT model in Sectioh 4.6, we analyze the MT model’s exrd¥irst, we show that for the
overconstrained.? MT model, the tails of the in-sample residual distributicecey more slowly
than the tails of the normal distribution, helping to explaiy the robust pseudo-Huber regression
procedure for fitting the MT model yields marginally bettesults. Second, we show using a
statistical simulation procedure that the MT model’s sigrdredging performance is not likely to
be due to chance, but instead due to the model’s robustnéssaspect to noise in option data.

In this section, we restrict our attention to the SPX dataessbling us to run a reasonable
number of simulations. This is justified by the results froett®n[4.6, which show consistency
of MT model results across LIFFE and SPX options. In whabfed, the underlying will be the
S&P 500 index, rather than an individual equity.

4.7.1 In-Sample Error Analysis

While fitting the regression model as in_(4.22), we obtain #sdual vectokg,; for each day
i. When we use the overconstrainéd method from Sectioh 4.3.3, the regression is performed
under the assumption that the residuals are (i) indeperadegtion strike and maturity, and (ii)
independent and identically distributed (i.i.d.) samitem an error random variable. We consider
data from 2009 and 2010 separately since our data showsabtcdifferent liquidity of options
for these two years that is also captured in our results.

Collecting all error vectorgg ; for 2009 and 2010, we obtain, respectively, 5,647 and 14,366
i.i.d. samples of the random variablés,,, and E»yo. We then subject our samples 6%y
and Fy1o to exploratory data analysis. We then fit a generalized Hgder distribution (GHD)
to both these samples and find the maximum likelihood estisnaia expectation maximization.
We fit a GHD for three reasons. First, the GHD has been usedswiticess in finance where
heavier-than-normal tails arise (McNeil et al., 2005). @et; the GHD includes as special cases,
other distributions of interest: hyperbolic, normal irserGaussian, variance gamma, student t,
and normal that enables us to perform likelihood ratio test#rd, the best fit GHD is a very good
match for the kernel density estimatesiof,,, and Eyyc—see Fid 4.R).
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We use the five parameter parametrization of the GHD (LuettiiBreymann, 2013, section

4.2). The parameters of the GHD that best fitg,y and Es, are given in Table 4.13.

We employ likelihood ratio tests and AIC model selectiondstthe error distribution. For
the samples o9, the likelihood ratio tests reject the hypothesis that the tinderlying distri-
bution belongs to four of the five special cases of the GHD ropat above—the exception is the
normal inverse Gaussian distribution, withp-&alue of 0.05. For the samples 6%, the likeli-
hood ratio test rejects that the true underlying distridoutbelongs to any of the five specical cases
of the GHD mentioned above. For bathy,y and F»y;o samples, AIC model selection criteria also
selects GHD as the best fitted model for the 2010 errors.

Taken together, these exploratory results indicate tla@HD, rather than any of the five
special cases we tested, is a good fit for the residuals fr@@ 26d 2010. Note that the tail decay
in the GHD is given byz|*¢™*, wherea = A — 1 andm differs for the left and right tails. For our
fitted distribution,a is —1.4 (0.22) for 2009 (2010) respectively. The exponenis 0.56 (—0.472)
for the left (right) tail for 2009 and.048 (—0.49) for the left (right) tail for 2010. This indicates
that the fitted GHD is asymmetric and has heavier tails thamtrmal distribution.

The tails of the GHD fitted to the 2009 and 2010 residuals arerisistent with the assump-
tion that the erroe in (4.164) is normally distributed. ¥ does indeed have heavier-than-normal
tails, then the least-squares solutibn (4]16b) will nothee mmaximum likelihood estimator ¢
in (4.16&). On the other hand, the pseudo-Huber solufid@j4vill be close to the minimizer of
|ell1, which is the maximum likelihood estimator Bfwhen the erroe has a Laplace distribution
with asymptotic tail decay /. The tail decay of the fitted GHD is closer to Laplace than radym
helping to explain why the pseudo-Huber method performsgmally better than thé? method.

4.7.2 MT Model Performance: Perturbed Regression Coefficients

Let j be a fixed day in either 2009 or 2010, anddgt; denote a vector of samples from the GHD
using the best fit parameters from Table 4.13 for the appatgpyiear. We assumag ; has the same
number of components &3 ; in (4.22), i.e., the number of available call options for erlging ©

on day;j. Let 3°7 denote the MT regression coefficients computed uging (3 fo8tunderlying

© on dayj. Then define the vectar®~ of simulated option prices by

Vo3 = PN(X3, 699) 4 co (4.26)

By comparison with[(4.22), we see thakifinde have the same distribution, th&éhandV have
the same distribution as well.
We now useV®7 in place of the market priceg®7 in (@.164) and obtain a new set of

regression coefficienfé@’] using [4.16b). Using the coefﬁcierﬁse’j onday; = i—1, we compute
out-of-sample hedging errors using a self-financed paottokated on dayand liquidated on day
i + 1 as in Section 4.4]2. Repeating this procedifrémes, and aggregating the data across each
year, we obtair282, 350 samples off 5, and718, 300 samples of)j},, whereH,'" is a random
variable representing the out-of-sample hedging errorengdhe MT model on one day in year
Note that we repeat the procedure 50 times so that we havgleisamples of the random variable
7, (explained next) such that the meanmptonverges to a constant value.

To relate the MT model’s performance to that of Heston’s nosle computer, = |H}V| —
|H})4T|, WhereHSJV is the out-of-sample hedging error for Heston’s model caeghas in Section
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[4.4. In Figurd 4B we show kernel density estimates (KDEj,dfor y = 2009 andy = 2010.
The significant asymmetry present in both years’ KDE plotdate that the MT model’s superior
hedging performance persists even when market prices ditien historical market prices. To
quantify the improvement in performance, we report the ldeaif 7, in Table[4.14. From the
table, it is clear that only about 20% of SPX options can beghddetter using Heston’s model.
The mean ofry09 andmgg are $0.8707 and $0.9089 respectively. Aslo, the empirigaliudative
distribution function value ofy9 and ;o at zero is $0.2366 and $0.2141 respectively. The
performance of the MT model indicates its robustness wipeet to noisy option prices.
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All 118 stocks 25 non-dividend paying stocks

< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 281602 280725 411781 974108 58022 55454 78524 192000
0.94-0.97 98580 65437 97078 261095 16829 11843 16207 44879
0.97-1 102438 65866 98096 266400 17217 12177 17116 46510
1-1.03 99652 63418 91491 254561 16897 11750 16430 45077
1.03-1.06 92177 59610 86991 238778 15815 11204 15664 42683

> 1.06 506405 445070 653051 1604526 97161 89247 124452 310860
Overall 1180854 980126 1438488 3599468 221941 191675 36839682009

Table 4.1: Number of options binned by moneyness-matugtggory for all 118 LIFFE option
symbols and 25 LIFFE option symbols with non-dividend pgyamderlying.

All 118 stocks 25 non-dividend paying stocks
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.31 1.05 2.60 1.49 0.26 1.01 1.82 111
0.94-0.97 0.79 2.10 411 2.35 0.61 1.75 2.58 1.62
0.97-1 1.24 2.64 4.63 2.84 0.89 212 2.98 1.98
1-1.03 1.85 3.23 5.01 3.33 1.20 241 3.11 221
1.03-1.06 2.59 3.96 5.67 4.05 1.58 2.97 3.42 2.62
> 1.06 6.46 7.95 8.98 7.90 3.64 5.26 4.80 4.57
Overall 3.38 4.68 6.08 4.81 1.98 3.30 3.49 2.95

Table 4.2: Average option price in Euro8)(in each moneyness-maturity bin for all 118 LIFFE
option symbols and for 25 LIFFE option symbols with non dend paying underlying.

2009 SPX index options 2010 SPX index options

< 60 60-180 > 180 Overall < 60 60-180 Overall
< 0.94 816 196 67 1079 3157 1484 4641
0.94-0.97 491 110 35 636 1928 293 2221
0.97-1 600 198 44 842 1951 405 2356
1-1.03 698 184 29 911 1678 314 1992
1.03-1.06 590 131 21 742 1119 90 1209
> 1.06 1164 300 9 1473 1717 231 1948
Overall 4359 1119 205 5683 11550 2817 14367

Table 4.3: Number of SPX options in 2009 and 2010 in each muassymaturity bin.

2009 SPX index options 2010 SPX index options
< 60 60-180 > 180 Overall < 60 60-180 Overall
< 0.94 7.73 29.49 52.02 14.44 2.88 9.70 5.06
0.94-0.97 20.98 53.30 81.42 29.90 8.80 33.03 12.00

0.97-1 31.65 66.06 97.47 43.18 20.43 50.13 25.53
1-1.03 43.50 74.77 110.95 51.96 37.94 64.81 42.18
1.03-1.06 57.26 89.43 127.96 64.94 59.51 87.86 61.62
> 1.06 116.77 138.94 160.66 121.55 122.25 146.97 125.18
Overall 54.06 82.11 87.68 60.80 35.16 37.84 35.68

Table 4.4: Average SPX index option price in US dollars (8ach moneyness-maturity category
in 2009 and 2010 SPX.
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In-Sample Pricing Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0939 0.1767 0.3272 0.2164 0.0865 0.1484 0.2638 0.1793 0.0726 630.120.2874 0.1789
0.94-0.97 0.1503 0.2204 0.3175 0.2300 0.1440 0.2114 0.2799 0.2114 40.11D.1358 0.2788 0.1798
0.97-1 0.1762 0.2325 0.3078 0.2386 0.1720 0.2311 0.2838 0.2278 0.125714110 0.2945 0.1917
1-1.03 0.1910 0.2563 0.3057 0.2485 0.1863 0.2533 0.2937 0.2416 0.122214730 0.3181 0.1989
1.03-1.06 0.1919 0.2810 0.3070 0.2561 0.1787 0.2664 0.2969 0.2437 90.108.1547 0.3066 0.1924
> 1.06 0.1440 0.3385 0.4005 0.3024 0.1236 0.2251 0.3296 0.2356 0.0631 580.160.3653 0.2146
Overall 0.1431 0.2683 0.3559 0.2623 0.1302 0.2070 0.3000 0.2190  40.0830.1489 0.3258 0.1981

Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 >180  Overall < 60 60-180 > 180 Overall
< 0.94 0.0961 0.1827 0.3340 0.2216 0.0887 0.1550 0.2711 0.1849 0.0777 930.130.2991 0.1890
0.94-0.97 0.1532 0.2286 0.3255 0.2361 0.1468 0.2194  0.2881 0.2175 50.119.1523 0.2900 0.1911
0.97-1 0.1791 0.2408 0.3158 0.2447 0.1750 0.2388 0.2924 0.2340  0.135215850 0.3074 0.2044
1-1.03  0.1928 0.2623 0.3150 0.2540  0.1882 0.2590 0.3023 0.2468  0.131816380 0.3285 0.2105
1.03-1.06 0.1929 0.2857 0.3162 0.2610 0.1802 0.2716 0.3065 0.2490 20.118.1712 0.3189 0.2045
> 1.06 0.1439 0.3396 0.4044 0.3042 0.1245 0.2297 0.3373 0.2403 0.0667 470.170.3753 0.2222
Overall 0.1443 0.2723 0.3619 0.2661 0.1319 0.2127 0.3079 0.2242  20.0890.1611 0.3367 0.2076

Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0539 0.0554 0.0502 0.0527 0.0336 0.0391 0.0381 0.0371 0.0483 230.060.0640 0.0591
0.94-0.97 0.0547 0.0518 0.0727 0.0607 0.0475 0.0484  0.0445 0.0466 00.070.0836 0.0782 0.0765
0.97-1 0.0603 0.0705 0.0915 0.0744  0.0521 0.0521 0.0470 0.0502 0.075308880 0.0802 0.0805
1-1.03  0.1117 0.1016 0.1081 0.1079 0.0536 0.0528 0.0491 0.0517 0.073208890 0.0835 0.0809
1.03-1.06 0.1933 0.1444 0.1341 0.1593 0.0529 0.0557 0.0525 0.0534 40.06%.0897 0.0847 0.0786
> 1.06 0.4178 0.3333 0.2485 0.3250 0.0378 0.0551 0.0562 0.0501 0.0366 990.060.0772 0.0625
Overall 0.2278 0.1913 0.1537 0.1880 0.0415 0.0498 0.0490 0.0468  (00.0510.0725 0.0747 0.0664

Table 4.5: All 118 LIFFE option symbols: from top to bottome present the in-sample, one day
out-of-sample, and out-of-sample hedging mean absolotesan Euros€), respectively.

In-Sample Pricing Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0684 0.1324 0.1880 0.1358 0.0634 0.1078 0.1494 0.1114 0.0421 000.060.0820 0.0636
0.94-0.97 0.0936 0.1318 0.1605 0.1279 0.0903 0.1208 0.1407 0.1165 70.056.0592 0.0824 0.0666
0.97-1 0.1029 0.1301 0.1624 0.1319 0.1001 0.1246 0.1497 0.1248 0.060005740  0.0896 0.0702
1-1.03 0.1035 0.1330 0.1554 0.1301 0.0999 0.1276 0.1476 0.1245 0.055905560  0.0893 0.0680
1.03-1.06 0.1054 0.1470 0.1576 0.1355 0.0971 0.1363 0.1502 0.1269 00.05@.0556 0.0886 0.0656
> 1.06 0.0843 0.1844 0.2030 0.1605 0.0700 0.1139 0.1606 0.1189 0.0320 110.060.1028 0.0687
Overall 0.0852 0.1573 0.1879 0.1459 0.0763 0.1154 0.1540 0.1179  80.0410.0598 0.0930 0.0670

Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0705 0.1379 0.1934 0.1402 0.0656 0.1146 0.1555 0.1165 0.0471 270.070.0919 0.0728
0.94-0.97 0.0962 0.1407 0.1661 0.1332 0.0929 0.1304  0.1470 0.1224  30.064.0756 0.0933 0.0777
0.97-1 0.1055 0.1377 0.1682 0.1370  0.1028 0.1330 0.1561 0.1303  0.068007350 0.1010 0.0816
1-1.03 0.1059 0.1420 0.1630 0.1361 0.1024 0.1368 0.1547 0.1304 0.064707320 0.1002 0.0798
1.03-1.06 0.1067 0.1540 0.1644 0.1403 0.0990 0.1441 0.1572 0.1322 80.058.0733 0.1001 0.0778
> 1.06 0.0845 0.1867 0.2053 0.1622 0.0713 0.1199 0.1652 0.1228 0.0356 120.070.1110 0.0760
Overall 0.0866 0.1620 0.1921 0.1493 0.0782 0.1223 0.1596 0.1226  20.0470.0723 0.1024 0.0759

Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0382 0.0408 0.0355 0.0378 0.0267 0.0330 0.0258 0.0281 0.0351 080.050.0432 0.0430
0.94-0.97 0.0361 0.0454 0.0578 0.0465 0.0343 0.0374 0.0288 0.0331  20.04D.0623 0.0502 0.0523
0.97-1 0.0448 0.0628 0.0705 0.0591 0.0366 0.0392 0.0311 0.0353 0.049306320 0.0518 0.0539
1-1.03 0.0740 0.0821 0.0796 0.0782 0.0363 0.0368 0.0295 0.0339 0.047006100  0.0505 0.0520
1.03-1.06 0.1191 0.1142 0.0934 0.1083 0.0360 0.0410 0.0305 0.0353  70.044.0639 0.0506 0.0520
> 1.06 0.2657 0.2343 0.1485 0.2096 0.0266 0.0387 0.0318 0.0322 0.0260 040.050.0464 0.0412
Overall 0.1476 0.1399 0.0980 0.1258 0.0294 0.0370 0.0296 0.0317  80.0340.0536 0.0466 0.0448

Table 4.6: 25 LIFFE option symbols with non-dividend payimiderlying: from top to bottom,
we present the in-sample, one day out-of-sample, and es&ople hedging mean absolute erorrs

in Euros €), respectively.
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In-Sample Pricing Errors

Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.8066 1.2891 3.3626 1.0529 0.6531 1.1272 3.1615 0.8950 0.3827 170.440.4571 0.3981
0.94-0.97 1.5875 1.5894 3.5900 1.6980 1.2043 1.2083 3.2579 1.3180 50.969.7099 0.7592 0.9130
0.97-1 1.4227 1.4853 3.7589 1.5595 1.1894 1.1438 3.4583 1.2972 0.983476210 1.2557 0.9456
1-1.03 1.4231 1.5424 3.1430 1.5019 1.2005 1.2169 3.1522 1.2660 0.808776030  1.3450 0.8160
1.03-1.06 1.3544 1.8294 2.2189 1.4627 1.0814 1.3002 2.4501 1.1588 40.59®.6742 1.5565 0.6373
> 1.06 1.0156 1.3396 4.4884 1.1028 0.5414 0.9417 3.5248 0.6411 0.5892 820.441.1743 0.5641
Overall 1.2080 1.4718 3.3877 1.3386 0.9048 1.1234 3.1834 1.0300 80.6830.6061 0.9498 0.6781
Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 1.0283 1.8973 3.3559 1.3307 0.9923 1.9481 3.0750 1.2952 1.1567 812.412.6902 1.4810
0.94-0.97 1.9542 2.3008 4.2466 2.1403 1.7276 2.3129 3.8562 1.9460 82.002.5075 2.6868 2.1301
0.97-1 1.7818 2.1510 4.4395 2.0075 1.6928 2.1234 4.1764 1.9238 1.918921492  3.0285 2.0465
1-1.03 1.7268 1.8951 4.0414 1.8345 1.6345 1.7578 4.1126 1.7383 1.676393031 3.3505 1.7809
1.03-1.06 1.6237 2.1759 3.6915 1.7820 1.5654 1.8046 4.1257 1.6818 31.431.8417 3.0522 1.5514
> 1.06 1.1800 1.6689 3.9170 1.2961 1.2352 1.5369 3.3974 1.3095 1.1188 711.464.6104 1.2100
Overall 1.4704 1.9532 3.8964 1.6536 1.4174 1.8569 3.7149 1.5874  41.4691.9887 2.9690 1.6264
Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 1.5960 1.6972 1.7254 1.6192 1.0208 1.5097 2.1006 1.1582 1.5538 973.014.2792 1.9369
0.94-0.97 1.6073 1.4276 1.4424 1.5701 1.5660 1.8457 1.7572 1.6203 42.42B.8394 4.0458 2.7325
0.97-1 1.5668 1.4129 1.7418 1.5444 1.8276 1.7252 1.8811 1.8091 2.793945503  3.9352 2.9958
1-1.03 2.4576 1.8226 2.5395 2.3573 1.7119 1.8393 2.0883 1.7452 2.618962803  4.1940 2.8353
1.03-1.06 3.9381 2.6151 2.3725 3.7387 1.5337 1.4643 1.3571 1.5206 32.132.7559 2.8632 2.2313
> 1.06 6.3086 4.5227 3.2818 5.9344 1.2601 1.2305 3.4344 1.2650 1.5567 361.866.1118 1.6413
Overall 2.9351 2.3265 1.8930 2.7908 1.4548 1.5846 1.9519 1.4964  3.1303.0328 4.0640 2.3595

Table 4.7: SPX index options from 2009: from top to bottom,pesent the in-sample, one day
out-of-sample, and out-of-sample hedging mean absolotesan US Dollars ($), respectively.

In-Sample Pricing Errors

Black-Scholes Markov Tree Heston
< 60 60-180 Overall < 60 60-180 Overall < 60 60-180 Overall
< 0.94 2.4793 4.2638 3.0499 1.8093 3.1727 2.2453 0.7678 0.7232 0.7536
0.94-0.97 2.1529 1.3254 2.0437 1.5996 1.1367 1.5385 1.9971 1.3807 81.915
0.97-1 1.5151 3.0341 1.7762 1.3373 2.8471 1.5968 3.3062 1.2439 2.9517
1-1.03 1.9801 5.6286 2.5552 1.6103 4.7825 2.1104 3.6362 1.2564 3.2611
1.03-1.06 2.9051 8.2283 3.3014 1.7680 6.3371 2.1081 3.3663 1.2077 63.205
> 1.06 2.5464 9.5136 3.3726 1.8835 5.4483 2.3062 2.3409 1.6233 2.2558
Overall 2.2406 4.4907 2.6818 1.6727 3.3813 2.0077 2.3041 1.0152  4£.051
Out-of-Sample Pricing Errors
Black-Scholes Markov Tree Heston
< 60 60-180 Overall < 60 60-180 Overall < 60 60-180 Overall
< 0.94 2.5247 4.6013 3.1887 2.0081 3.9160 2.6181 1.1167 1.6214 1.2780
0.94-0.97 2.5631 3.5518 2.6935 2.1082 3.3628 2.2737 2.5404 3.0072 02.602
0.97-1 2.2363 4.2364 2.5801 2.0710 3.9689 2.3973 3.9287 2.7678 3.7291
1-1.03 2.3524 5.6459 2.8715 2.0468 4.6468 2.4566 4.2024 2.5562 3.9429
1.03-1.06 2.9328 9.0714 3.3898 1.9820 6.4140 2.3119 3.7052 27069 93.630
> 1.06 2.5203 9.7335 3.3761 2.1347 5.8657 25774 2.4940 2.9696 2.5504
Overall 2.4963 5.1198 3.0107 2.0573 4.1872 2.4750 2.7332 21798  72.624
Out-of-Sample Hedging Errors
Black-Scholes Markov Tree Heston
< 60 60-180 Overall < 60 60-180 Overall < 60 60-180 Overall
< 0.94 1.6121 1.9310 1.7063 0.8483 1.2550 0.9684 1.1571 1.8352 1.3574
0.94-0.97 1.4957 1.5417 1.5005 1.0896 1.7307 1.1570 2.0851 3.6284  42.247
0.97-1 1.2584 1.3563 1.2722 1.3459 1.9216 1.4272 2.7414 4.1820 2.9447
1-1.03 1.9874 1.4087 1.9101 1.4541 1.7795 1.4976 2.6213 3.6391 2.7572
1.03-1.06 3.9285 2.6833 3.8763 1.5916 1.7519 1.5983 2.3154 3.6511 42371
> 1.06 6.5603 4.8238 6.4119 1.6083 2.7452 1.7054 1.9719 4.2644 2.1679
Overall 2.2491 1.8759 2.1850 1.2223 1.5396 1.2768 2.0465 2.7290 8.163

Table 4.8: SPX index options from 2010: from top to bottom,present the in-sample, one day
out-of-sample, and out-of-sample hedging mean absolotesan US Dollars ($), respectively.

69



0.2-

Euro hedging error per day
S
N

0.1-

Euro hedging error per day
S
-

1
o
N

[
o

Dollar hedging error per day

|
=
o

Dollar hedging error per day

o
o

o
o

[9)]

o

|
o

|
=
o

o

|
o

|
=
o

a 444 4
Aagatall 1
4 4 i 4 ';ﬁ;éf? ??t
i 2829 4 i). a l £l & ' '
g MY o 2% Rl sl Kt
g )l j{!’: \ i | M “‘0,.;
i I~ 2 s g i
1 ! ¥ i
i ry H ¥
I R
A

09-2009 12-2009 03-2010 06-2010 09-2010

EPR

[ Sp——

A

Sy

[

01-2010 02-2010 03-2010 04-2010 05-2010 oe—éq&o 07-2010
ate

[S—

01-2009 02-2009 03-2009 04-2009 05-2009 oe—éoogd P7—é009 08-2009 09-2009 10-2009
ate

-~}

11-2009  12-2009

A 4 s
a at H 4 P
s 4 . 4
SV 5*; Looga s
) Wk AN 4 i
] gy ¢ ] ’ ;
" .: A A
3 i1 i it
i 8 ; 1 i
i : i
= i
08-2010 09-2010 10-2010 11-2010

models
-~ MT
-4- SV

models
—~MT
-4- 8V

models
—~MT
o\

models
= MT
-A- SV

Figure 4.1: We plot the daily market hedging error againstatrresponding date. In the first and
second panel, we plot the market hedging errors in Eu&ddr all 118 LIFFE option symbols
and 25 LIFFE option symbols with non dividend paying undedyrespectively. In the bottom
two panels, we plot the market hedging errors in US Dollay$qSPX index options from 2009
and 2010 respectively.
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In-Sample Pricing Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0865 0.1484 0.2638 0.1793 0.0735 0.1219 0.2726 0.1716
0.94-0.97 0.1440 0.2114 0.2799 0.2114 0.1245 0.1723 0.2801 0.1943
0.97-1 0.1720 0.2311 0.2838 0.2278 0.1498 0.1908 0.2851 0.2098
1-1.03 0.1863 0.2533 0.2937 0.2416 0.1634 0.2135 0.2957 0.2235
1.03-1.06 0.1787 0.2664 0.2969 0.2437 0.1581 0.2291 0.2980 0.2268
> 1.06 0.1236 0.2251 0.3296 0.2356 0.1097 0.2008 0.3440 0.2303
Overall 0.1302 0.2070 0.3000 0.2190 0.1141 0.1782 0.3094 0.2096

Out-of-Sample Pricing Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0887 0.1550 0.2711 0.1849 0.0769 0.1316 0.2826 0.1796 0.0242 350.030.0330 0.0306
0.94-0.97 0.1468 0.2194 0.2881 0.2175 0.1286 0.1838 0.2904 0.2026 20.03D.0417 0.0395 0.0373
0.97-1 0.1750 0.2388 0.2924 0.2340 0.1540 0.2011 0.2963 0.2180 0.035504480 0.0422 0.0403
1-1.03 0.1882 0.2590 0.3023 0.2468 0.1662 0.2214 0.3071 0.2306 0.034704520 0.0442 0.0407
1.03-1.06 0.1802 0.2716 0.3065 0.2490 0.1600 0.2359 0.3107 0.2338 70.03D.0449 0.0449 0.0398
> 1.06 0.1245 0.2297 0.3373 0.2403 0.1110 0.2067 0.3541 0.2365 0.0239 370.040.0694 0.0478
Overall 0.1319 0.2127 0.3079 0.2242 0.1165 0.1860 0.3198 0.2166  20.0270.0409 0.0521 0.0409

Out-of-Sample Hedging Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0336 0.0391 0.0381 0.0371 0.0332 0.0392 0.0392 0.0375 0.0346 890.030.0360 0.0364
0.94-0.97 0.0475 0.0484 0.0445 0.0466 0.0474 0.0486 0.0455 0.0470 90.044.0469 0.0420 0.0443
0.97-1 0.0521 0.0521 0.0470 0.0502 0.0522 0.0523 0.0478 0.0506 0.048305000 0.0443 0.0472
1-1.03 0.0536 0.0528 0.0491 0.0517 0.0533 0.0529 0.0497 0.0519 0.047605070  0.0457 0.0477
1.03-1.06 0.0529 0.0557 0.0525 0.0534 0.0520 0.0554 0.0527 0.0531 10.043.0494 0.0455 0.0455
> 1.06 0.0378 0.0551 0.0562 0.0501 0.0369 0.0542 0.0556 0.0494 0.0284 050.040.0459 0.0388
0.0415 0.0498 0.0490 0.0468 0.0410 0.0495 0.0492 0.0466  80.0350.0423 0.0428 0.0403

Overall

Table 4.9: Comparison of three different regression proeeiior the Markov tree model on 118
LIFFE option symbols: from top to bottom, we present theample, one day out-of-sample, and
out-of-sample hedging mean absolute erorrs in edE)sréspectively.

In-Sample Pricing Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0634 0.1078 0.1494 0.1114 0.0545 0.0882 0.1569 0.1061
0.94-0.97 0.0903 0.1208 0.1407 0.1165 0.0775 0.0963 0.1427 0.1060
0.97-1 0.1001 0.1246 0.1497 0.1248 0.0860 0.0985 0.1567 0.1153
1-1.03 0.0999 0.1276 0.1476 0.1245 0.0858 0.1033 0.1515 0.1143
1.03-1.06 0.0971 0.1363 0.1502 0.1269 0.0840 0.1109 0.1532 0.1165
> 1.06 0.0700 0.1139 0.1606 0.1189 0.0607 0.0961 0.1668 0.1133
Overall 0.0763 0.1154 0.1540 0.1179 0.0659 0.0953 0.1601 0.1112

Out-of-Sample Pricing Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0656 0.1146 0.1555 0.1165 0.0574 0.0966 0.1647 0.1126 0.0186 660.020.0220 0.0223
0.94-0.97 0.0929 0.1304 0.1470 0.1224 0.0810 0.1083 0.1491 0.1128 50.028.0299 0.0247 0.0252
0.97-1 0.1028 0.1330 0.1561 0.1303 0.0896 0.1089 0.1637 0.1219 0.024403110 0.0251 0.0264
1-1.03 0.1024 0.1368 0.1547 0.1304 0.0894 0.1143 0.1594 0.1214 0.023603200  0.0252 0.0264
1.03-1.06 0.0990 0.1441 0.1572 0.1322 0.0864 0.1208 0.1612 0.1229 00.02D.0314 0.0251 0.0256
> 1.06 0.0713 0.1199 0.1652 0.1228 0.0625 0.1035 0.1724 0.1182 0.0161 640.020.0238 0.0221
Overall 0.0782 0.1223 0.1596 0.1226 0.0684 0.1038 0.1667 0.1170  9.0180.0276 0.0236 0.0232

Out-of-Sample Hedging Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.0267 0.0330 0.0258 0.0281 0.0264 0.0330 0.0265 0.0283 0.0265 150.030.0241 0.0270
0.94-0.97 0.0343 0.0374 0.0288 0.0331 0.0342 0.0374 0.0293 0.0333 80.03D.0355 0.0269 0.0310
0.97-1 0.0366 0.0392 0.0311 0.0353 0.0366 0.0393 0.0316 0.0354 0.033403560 0.0271 0.0316
1-1.03 0.0363 0.0368 0.0295 0.0339 0.0361 0.0367 0.0297 0.0339 0.033603810 0.0273 0.0324
1.03-1.06 0.0360 0.0410 0.0305 0.0353 0.0355 0.0408 0.0307 0.0352 90.03®@.0359 0.0265 0.0306
> 1.06 0.0266 0.0387 0.0318 0.0322 0.0259 0.0380 0.0314 0.0316 0.0205 940.020.0250 0.0248
Overall 0.0294 0.0370 0.0296 0.0317 0.0290 0.0367 0.0297 0.0315  70.0250.0317 0.0252 0.0272

Table 4.10: Comparison of three different regression proeifor the Markov tree model on 25
LIFFE option symbols with non-dividend paying underlyirfgom top to bottom, we present the
in-sample, one day out-of-sample, and out-of-sample Imgdigiean absolute erorrs in euré®)(

respectively.
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In-Sample Pricing Errors
Overconstrained.? Pseudo-Huber Underconstrainéd
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 0.6531 1.1272 3.1615 0.8950 0.6076 1.1512 3.7982 0.9045
0.94-0.97 1.2043 1.2083 3.2579 1.3180 1.1659 1.1951 3.7680 1.3141
0.97-1 1.1894 1.1438 3.4583 1.2972 1.1216 1.1430 4.1478 1.2848
1-1.03 1.2005 1.2169 3.1522 1.2660 1.0907 1.1261 3.9542 1.1890
1.03-1.06 1.0814 1.3002 2.4501 1.1588 0.9630 1.2113 3.1659 1.0692
> 1.06 0.5414 0.9417 3.5248 0.6411 0.4576 1.0254 5.8086 0.6059
Overall 0.9048 1.1234 3.1834 1.0300 0.8267 1.1233 3.9136 0.9964

Out-of-Sample Pricing Errors
Overconstrained. > Pseudo-Huber Underconstrainéd
< 60 60-180 > 180 Overall < 60 60-180 >180  Overall < 60 60-180 > 180 Overall
< 0.94 0.9923 1.9481 3.0750 1.2952 0.9699 1.9284 3.5258 1.3027 0.7289 351.451.8470 0.9067
0.94-0.97 1.7276 2.3129 3.8562 1.9460 1.7557 2.3093 4.4246 1.9983 31.151.5673 1.7941 1.2470
0.97-1 1.6928 2.1234 4.1764 1.9238 1.7074 2.1721 4.8128 1.9790 1.147838201 1.3632 1.2071
1-1.03 1.6345 1.7578 41126 1.7383 1.6111 1.7243 4.8980 1.7389 1.145724691 1.6519 1.1784
1.03-1.06 1.5654 1.8046 4.1257 1.6818 1.5343 1.9275 4.8187 1.7028 51.078.3287 1.3939 1.1183
> 1.06 1.2352 1.5369 3.3974 1.3095 1.1814 1.6359 3.7108 1.2851 0.9005 120.942.4268 0.9175
Overall 1.4174 1.8569 3.7149 1.5874 1.3978 1.8976 4.3047 1.6019  41.0011.2913 1.6722 1.0756

Out-of-Sample Hedging Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 > 180 Overall < 60 60-180 > 180 Overall < 60 60-180 > 180 Overall
< 0.94 1.0208 1.5097 2.1006 1.1582 1.0213 1.5106 2.1209 1.1599 0.9814 891.532.0052 1.1174
0.94-0.97 1.5660 1.8457 1.7572 1.6203 1.5755 1.8647 1.7848 1.6323 51.672.7379 1.8819 1.6918
0.97-1 1.8276 1.7252 1.8811 1.8091 1.8346 1.7370 1.8993 1.8177 1.657149531 1.5277 1.6211
1-1.03 1.7119 1.8393 2.0883 1.7452 1.7155 1.8535 2.1170 1.7514 1.546322591 1.3636 1.4969
1.03-1.06 1.5337 1.4643 1.3571 1.5206 1.5061 1.4700 1.3488 1.4974 11.281.3652 1.0848 1.2846
> 1.06 1.2601 1.2305 3.4344 1.2650 1.1600 1.2270 2.3251 1.1784 0.9971 441.081.1629 1.0126
Overall 1.4548 1.5846 1.9519 1.4964 1.4372 1.5916 1.9423 1.4835  81.3271.4058 1.6783 1.3524

Table 4.11: Comparison of three different regression proceifor the Markov tree model on
2009 SPX index options: from top to bottom, we present theamyple, one day out-of-sample,
and out-of-sample hedging mean absolute erorrs in US Bdi#r respectively.

In-Sample Pricing Errors
Overconstrained.? Pseudo-Huber Underconstrain&d
< 60 60-180 Overall < 60 60-180 Overall < 60 60-180 Overall
< 0.94 1.8093 3.1727 2.2453 1.5200 2.6941 1.8954
0.94-0.97 1.5996 1.1367 1.5385 1.1958 1.5735 1.2456
0.97-1 1.3373 2.8471 1.5968 1.2525 3.7508 1.6820
1-1.03 1.6103 4.7825 2.1104 1.8815 5.8175 2.5019
1.03-1.06 1.7680 6.3371 2.1081 2.0258 7.2277 2.4130
> 1.06 1.8835 5.4483 2.3062 1.9338 6.0313 2.4197
Overall 1.6727 3.3813 2.0077 1.5837 3.4962 1.9587

Out-of-Sample Pricing Errors
Overconstrained. > Pseudo-Huber Underconstrained
< 60 60-180 Overall < 60 60-180 Overall < 60 60-180 Overall

< 0.94 2.0081 3.9160 2.6181 1.7537 3.5422 2.3256 0.4769 0.8814 0.5937
0.94-0.97 2.1082 3.3628 2.2737 1.8129 3.6109 2.0501 0.7766 1.4730 80.847
0.97-1 2.0710 3.9689 2.3973 2.0111 4.7730 2.4859 1.0356 1.5060 1.1002
1-1.03 2.0468 4.6468 2.4566 2.2669 5.5526 2.7848 1.1075 1.3741 1.1403
1.03-1.06 1.9820 6.4140 2.3119 2.2277 7.2449 2.6012 1.0671 1.4748 91.085
> 1.06 2.1347 5.8657 2.5774 2.2293 6.2374 2.7042 1.0882 1.9201 1.1545
Overall 2.0573 4.1872 2.4750 1.9981 4.2890 2.4474 0.8511 1.1511 9.900

Out-of-Sample Hedging Errors
Overconstrained.? Pseudo-Huber Underconstrained
< 60 60-180 Overall < 60 60-180 Overall < 60 60-180 Overall

< 0.94 0.8483 1.2550 0.9684 0.8024 1.2060 0.9216 0.6159 0.9517 0.7065
0.94-0.97 1.0896 1.7307 1.1570 1.0639 1.7000 1.1308 0.9466 1.4735 90.991

0.97-1 1.3459 1.9216 1.4272 1.3324 1.9071 1.4135 1.1796 1.5360 1.2227

1-1.03 1.4541 1.7795 1.4976 1.4537 1.7812 1.4975 1.1644 1.2645 1.1742
1.03-1.06 1.5916 1.7519 1.5983 1.6123 1.7623 1.6186 1.0635 1.2231 61.068

> 1.06 1.6083 2.7452 1.7054 1.6270 2.7796 1.7256 1.0783 1.8883 1.1236

Overall 1.2223 1.5396 1.2768 1.2055 1.5083 1.2575 0.9572 1.1610  20.987

Table 4.12: Comparison of three different regression proeifor the Markov tree model on
2010 SPX index options: from top to bottom, we present theaimple, one day out-of-sample,
and out-of-sample hedging mean absolute erorrs in US Bor respectively.
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AMoooal p | o | gl
-0.4022| 0.5242| -0.0803]| 1.4903| 0.0980
1.2218| 0.3808| -1.8850| 2.442| 1.4059

2009
2010

Table 4.13: Best fit GHD parameters on errors from 2009 and.2010
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Figure 4.2: 2009 and 2010 in-sample error distributiongi®iDE and best fit GHD
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Figure 4.3: KDE of 2009 and 201@/5V| — | HMT]|

| 10%| 20%| 30%| 40%| 50%| 60%| 70%| 80%| 90%

-0.2888| -0.0357| 0.0651| 0.2879| 0.5720| 0.8463| 1.1781| 1.5894| 2.4213
-0.2008| -0.0066| 0.0578| 0.1768| 0.3679| 0.6658| 1.0401| 1.6276| 2.8967

2009
2010

Table 4.14: Deciles off/®V| — | HMT| for 2009 and 2010.
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Chapter 5

Generalization of the Markov Tree Process

Noise and time delays are key features of models of humamd:mlﬁ)_hita_and_MjJIdnLMS;
IMilton, M), circadian oscillators (Smolen et al., 20@@ne regulation dynamith al.,
12005;| Josic et all, 20111), cortical interneuron migratidan@ka et al., 2009), and resting brain
dynamlcs|( Deco et al., 2009, 2010). Despite the successeatrsp methods in other stochastic
contexts |(Bhattacharya and Waymire, 2009; Mugler et al.9p0felayed stochastic systems are
typically not treated using spectral methM\MOl

In this Chapter, we present a spectral numerical method tuleaé the probability density
function (pdf) for the delayed random walk that is obtaing@pplying the weak Euler-Maruyama
discretization to a class of stochastic delay differerggplations (SDDE). We refer to the method
as a spectral method because it involves solving the probidrourier space, and then using the
inverse FFT (fast Fourier transform) to compute the sofuitighysical space. This method is fast,
exact (to machine precision) and generalizable to othereroomplicated systems.

5.1 Introduction

Consider the SDDE
dY, = o(Ye = Y, pa)dt + (Y, — Yi_gar)dW; (5.1)

with initial conditionsY (¢t) = 0(t) for t € [0, ¢dt]. Herel is the integer delay (lag)}; is the
standard Wiener process, an@nd~ are measurable functions subject to the condition that when
~ = 0, the resulting deterministic equation has a stable fixedtpoi

To obtain the pdf of a stochastic differential equation kwib delay) at time > 0, a natural
approach is to solve the associated Fokker-Planck equdt@nan SDDE, however, the delayed
Fokker-Planck equation is circulmmw) andredrbe solved using standard numerical
methodsm b). For this reason, past studies Igpleed asymptotic and perturbative
methods to extract useful information from delayed FokRemck equations (Guillouzic etlal.,
11999 Frank| 2005k, a; Gdlla, 2009). Such methods break ddvem the noise term is multiplied
by a function of the delayed solution, or when the delay igdar

The technigue employed in this Chapter is fundamentalhebffit from the Fokker-Planck
approach. We use a standard stochastic numerical methddametize [(5.11) in time and space.
This discretization, together with piecewise constantaximation of the functiong and~, yields
a delayed random walk approximatidn (5.4) of the originaD&EDthe pdf of which is then com-
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puted using a fast and accurate spectral method.

An important reason for taking this approach is that delaysdlom walks can often be
solved exactly|(Ohira and Miltbh, 2009). Prior delayed @mdwalk approximations to SDDE
(Ohira. and Yamane, 2000; Ohira and Milton, 2009) feature shaped potential such that the
walker’s probabilities of right/left movements are spiyiaependent. The equivalence between
the Fokker-Planck equations for this delayed random watktle original SDDE has been demon-
strated|(Ohira and Milton, 2009), generalizing ideas ofeffest and Kac.

Instead of using a spatially dependent potential, the @elagndom walk approximation
(5.4) allows for non-uniformity of both the sizes* and probabilities{q,,1 — ¢.} of the in-
crements; through, these quantities also have a piecewise constant dependarspace. This
(piecewise) spatial homogeneity allows us to rewrite tretesy as a recursion that can be solved
using spatial Fourier transforms. We vigw (5.6) as a disceguation for the approximate time-
evolution of the pdf of[(5]1). Note th .6) differs bothderivation and solution from Fokker-

Planck equations for SDD illouzic et al., 1099; FrardQan,h| Galld, 2009).

5.2 Delayed Random Walk
We discretize SDDE{5}1) using the weak Euler-Maruyamarseh@igham| 2001) to obtain
Yn-‘rl = Yn + ¢(Yn - Yn—Z)At + V(Yn - Yn—f)\/EZ7 (52)

where Z is a Bernoulli random variable that takes valyesl, 1} with equal probabilities. The
initial conditions given aftef(5]1) yield initial conditns for [5.2):Y; = 6(jdt) for j =0,1,...,¢.
Let I 4 denote the indicator function on the sét We use

R R
P(z) ~ ZMT][CT'7CT+1)(x)7 V(z) ~ Z O-T][CT'7CT+1)(x)7
r=1 r=1

piecewise constant approximations with consggrando,, and substitute back intb (%.2) to obtain
Yo=Y, + At + o, VALZ, ¢, <Y, =Y,y < cri1. (5.3)
We rewrite [5.8) as the delayed random walk

Yn+1 - Yn + Kn7
Kp= KT if ¢ <Yy—Yay< o, (5.4)

whereK! is a Bernoullirandom variable that takes valgés§", K~} with probabilities{q,, 1—¢. }
respectively. We choos€K ", K, ¢} such that the moments df! match those of., At +

o—r\/AtZH. The delayed random walk(5.4) has not been considered iit¢heture, to the best of
our knowledge. This random walk is more general than exacilyable delayed and/or persistent

random walks in the literature (Berrones and Lartalde, 200diss, 2002; Rudnick and gsasd)ari,
2004 Van der Straeten and Naudts, 2006; @aRelayol, 2007; Bhat and Kurhar, 2012).

1For the purposes of approximating the weak EM scheme of tHeESBve setk” = p, At + o,V AtZ.
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5.3 Spectral Method

Let Q = {K,", K}, and leta; be the outcome of the random varialitg,_; ;. Applying
Bayes'’ theorem recursively tb (5.4), we get
P(Yn+1 :SﬂK :Oqﬂ---ﬂKn,gH :Oég)
_Z Yo=s—aNK,1=anN - NK, ;= ap)

Qi €N

X P(K,=o|Ky-1=0N--NK,y=0a41). (5.5)
Denote the left-hand side &%+ (a!) and the conditional probability aga‘*'). Then

TN ah) = > T, (s p(afth). (5.6)

oy 1€9Q2

Taking the Fourier transform inyields the linear system

Titiad) = D Ti(ag™) plagte 2t (5.7)

J/

g1 €0

S

in k£ space, wher?ﬁ’,;“r !(af) denotes the Fourier transform of the probability of reagkiby taking

a sequence of steps, ..., a; in the previoud steps. In[(517), we us&/ to denote thé€2R)* x
(2R)* matrix that gives the probability of transitioning from agsence of stateg, 1, ..., az)

to the sequencey,, ..., a;). Sparsity ofM follows easily: since each Bernoulli random variable
has only two outcomes, there are exactly two non-zero eninievery column of\/ for a total

of 2 x (2R)* non-zero entries. Frori (8.7) we hae™ = Mo, which impliesd,, = M" by,
where, is a (2R)’ x 1 vector with each component representifigyc, ..., ;). Let f(n,s)
denote the pdf of the delayed random walk]5.4) at time stegnd Ietf(n, k) denote its Fourier
transform with% as the variable that is Fourier conjugatestolhen, based on the above, we have
derived the solution in Fourier space:

Fn, k) = 17 M™ 5y, (5.8)

To compute the initial conditioy,, we require two steps. First, we use the initial condition
Yo, ..., Y, in the modified tree method (described below) to compute daetepdf of Yy, the
solution of [5.4) at time: = 2/. Next, we setd,, equal to the Fourier transform in space of the
pdf of Y2,. In this way, the spectral method handles any initial coon# {Y]},<;<, consisting
of discrete random variables. This includes, for examplig,set of constant initial conditions for
(5.4), and therefore any piecewise constant initial fuorefi(¢) for (5.1).

What remains is to recovef(n, s) from f(n, k). Since the walk is discrete in spagép, s)
is a linear combination of Dirac delta functions,

$) =Y fudl(s —sm). (5.9)

meN
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wheres,, takes specific values in space depending on the parameters in thesahd N' =
{—-N/2,-N/2 +1,...,N/2 — 1}. The presence of the Dirac deltas is a reason to avditna
Fourier inversion off(n, k). Here, note thaf is determined completely by the d&tf..., $1) }men:
it is this set we will solve for.

With f represented by (3.9), its Fourier transformfis:, k) = e fme 2R We

samplef(n, k) at discrete values df given byk; = jAk forall j € N:

Fn k) =" frne2miBkom, (5.10)

meN

Let 6 denote the Kronecker delta, and assume ftaf\s = 1/N. Then the inverse FFT of (5.10)
is

)= &3 3 gt

JEN meN
_ i Z fm Z ei2ﬂ'jAk(r7m)As
N meN JEN
1 ~
= 5 2 FuNo(r —m) = .
meN

The spectral method can now be summarized. In the first sepomputel(518), the exact solution
in Fourier space, but sampled only at discrete valudsg¥en byk; = jAk forall j € V. In the
second step, we compute the IFFT of this sampled Fouriesfoem at alls,, such thatn € N.
As shown, this yields the exact weigfit, corresponding to the spatial locatiep, meaning that
we can indeed recover the 4€1f,.., s,) } men that determine$ (5.9) exactly. We denote the solution
produced by the spectral method fas-r(n, s). The only source of error betweéi-rr(n, s) and
the exact pdff(n, s) is due to the inaccuracy in the IFFT algorithm itself (Briggsladenson,

00 )

Note that the first step requires computing the matrix-weptoductn times to obtain the
Fourier transform atV different points ink space, while the second step consists entirely of the
IFFT. The total complexity of the spectral method is tii&R)‘n + Nlog N ~ O(n?), lower
than the tree-based method described below.

ChoosingAs and Ak. Since the parameters i are not necessarily equal, we have a pdf
overs space with non-uniform spacing. We first convert this norfeum grid into a uniform grid
in order to use the IFFT. L§tK =}, be rationals such thdtis the least common multiple (LCM)
of their denominators. Since the random walker change®fitipn by an element of KX} 2 | at
every step, the minimum non-zero distance between two thisgthe random walker can occupy
is given byAs = 1/L. The maximum and minimum values that can be reached by the random
walker at any step are, respectivelyS,,, = n max{KF}? , and S, = n min{K*}* . This
also implies that we have to calculate the pdf\at= (Sinax — Smin)/As ~ O(nL) number of
grid points. Sincd. is a constant given the parameters, wejet O(n), wheren is the number
of steps taken by the random walker. Finally, usitngAs = 1/N, we getAk = 1/(NAs) =
L/N. Note that the parameters in the §etan be approximated such thais small. This leads
to incurring a relatively small error in calculating the pufhile increasing the efficiency of the
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Figure 5.1: Snapshots at different values of tim&how machine precision agreement between the
densities computed using the spectral method (each plaitbda different marker) and an enu-
merative exact method (each plotted using the same grayschlr as the corresponding marker).
Computed densities are for the random walk](5.4) with délay 5 and two types of Bernoulli
stepsk,,: outcomes 2, —2} with probabilities{0.7, 0.3} whenY,, > Y,,_5, and outcomes$1, —1}

with probabilities{0.9, 0.1} whenY,, < Y,,_5. Initial conditions were¥,, = 0 for n < /.

algorithm.

5.4 Modified Tree Method

For the delayed random walk(5.4), we have also developedamerative method for computing
the exact pdf. This modified tree method involves growingea tf all allowed paths/probabilities
of the random walker. In previous Work_(B_haLand_Ku] 01129, authors explained how to
do this when/ = 1. For/¢ > 1, we modify the old procedure, leveraging the rationalitytlod
increments of[(5]4). Given the pdf at any stepconsisting ofO(m) distinct states, computing
the pdf at stepn + 1 using the tree method requires three steps: (i) calculatingossible states
at stepm + 1, (ii) tracking the history and the region in which each ofghestates lie, and (iii)
checking for recombinations to obtain the pdf at step 1. Step (i) require@m operations, while
(i) requires (2R)* operations per state. Step (iii) requires finding uniquéestavith the same
history and summing the probabilities in each of these unisfates. The overall complexity is
thenY"" _ (2m)(2R)" + m?(2R)" ~ O(n®). In this work, we use this method for two purposes:
to computei,, for (5.8), and to compute exact reference solutions agaihsth we compare the
spectral method.

5.5 Results

For both Fig.[5.Jl and Fig[_8.2, we plot in solid lines (respety, solid markers in the same
grayscale/color) the pdf calculated by growing the tresgeetively, the spectral method). In
these figures, different grayscales/colors and markersised for different values of and/,
respectively. The solid markers lie exactly on the solidvesr demonstrating the accuracy of the
spectral method. In Fi§. 8.3, we plpfirrr(n, s) — f(n, s)||« both for different numbers of steps
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Figure 5.2: For different delays densities computed at time = 60 using the spectral method
(plotted using solid markers) agree to machine precisidah densities computed using an enu-
merative exact method (plotted using lines of the same gedgs/colors as markers). Computed
densities are for five different versions of the random walld), each with a different delay
¢ € {1,2,3,4,5}. The Bernoulli stepgs,, were as follows: outcomefl, —1} with probabilities
{0.3,0.7} whenY,, > Y,,_,, and outcome$2, —2} with probabilities{0.9,0.1} whenY;, < Y, _,.
Initial conditions wereY,, = 0 for n < /.

n (in solid squares) and different dela§/@n solid circles). All plots confirm the spectral method’s
accuracy up to machine precision. To obtain the pdf at 80 in Fig. [5.1, the modified tree
method takes 1390.8 s and the spectral method takes 0.60btdin the pdf for = 1 in Fig.[5.2,
the tree method from (Bhat and Kumar, 2012) takes 0.09 s, thfiexd tree method takes 0.29 s,
and the spectral method takes 0.09 s. All simulations wene dsing Matlab on an 8-core Intel i7
CPU. All codes used to produce the results in the Chapter aralaieafor downloadl. In all the
experiments reported in Fig. 5.1 and Fig.]5.2, the spectedhad is the fastest. Note that all of
these results use the initial conditioris= 0 for 0 < j < /.

Next, we apply the spectral method to the SDDE

dY; = tanh(Y; — Y;_sq)dt + dWV,, (5.11)

subject to deterministic initial condition®t) = 0 for ¢ < 3dt. Approximatingtanh(z) by
Zle I, o) (z) and applying the weak Euler-Maruyama discretization, we @) with
o, = 1forallr, ¢ =3 andY, = 0forn < /. The error in the cumulative distribution function (cdf)
calculated using the spectral method depends on the paenet,, 1, used to approximate the
tanh function; for the results shown in Fi§._5.4, these paransétract values are given in our
Matlab codél

Setting At = 0.04 and As = 0.01 for both theR = 3 and R = 5 approximations, we
compare their accuracies in Fig. 5.4. In the top pane, wefios$tin solid gray the empirical cdf
obtained afl’ = 2 (At = 0.04) by simulatingM = 10® sample paths of the Euler-Maruyama
discretization of [5.111)—this Monte Carlo (MC) run was penfied purely to give a reference
solution against which we compare the spectral methodigtisols. In the same pane, we plot

2 http://faculty.ucmerced.edu/hbhat/codes/ssdrwzaefer to the README file for details.
3 |nttp://faculty.ucmerced.edu/hbhat/codes/ssdrwzar.g
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Figure 5.3: Infinity norm error§ firrr(n, s) — f(n, s)||~ between the spectral and exact pdfs are
at the level of machine precision, both as a function of timend delay’. Each solid square, one
per value of time step, corresponds to thg- ||, error between the solid markers (spectral) and
lines (exact) in Figl. 5l1. Each solid circle, one per valudelfy/, corresponds to thg- ||, error
between the solid markers (spectral) and lines (exact)dn[Bi2. All parameters are as in Fig.
B.1{5.2, respectively.

cdfs from spectral method simulations in dot-dashed gfay=(3 approximation) and solid black
(R = 5 approximation). In the bottom pane of Fig.15.4, we plot theebetween the MC cdf and
the spectral method’s cdfs in dot-dashed gray 3) and solid black g = 5). The maxima of the
errors for theR = 3 and R = 5 approximations are, respectively()727 and0.0337. The times
taken to obtain the cdf through MC and the spectral methold ®it= 3 andR = 5 are 288.28 s,
0.56 s and 19.13 s, respectively. If we assume that the MCsrgnfficiently fine-scale as to be
close to the exact solution, these results suggest thapgir@xmate solution will converge to the
exact solution of the SDDE, as we incredseWe leave for future work a detailed discussion of
convergence and optimal step function approximation.

In this Chapter, we have developed a spectral method to oibtaipdf of a delayed random
walk that is both fast and accurate. As demonstrated, ththaodealso shows promise to solve
nonlinear SDDE. In future work, we plan to extend the spéctrethod to solve second-order

and/or oscillatory SDDE (Kim et al., 1999; Barrio et al., 2006
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Figure 5.4: For the nonlinear SDDE (5111), the accuracy efdif computed via the spectral
method increases as we increase the number of piecewisbbsanche& used to approximate
thetanh function. In the top pane, we plot in solid gray a fine-scatenence cdf obtained through
Monte Carlo (MC) simulation with\¢ = 0.04 and10® sample paths. In dot-dashed gray and solid
black, we plot the cdfs obtained using the spectral methdll &= 3 and R = 5 approximations,
respectively. In the bottom pane, we plot the pointwisersrbetween the spectral method cdfs
and the MC cdf. The maximum error decreases ffb0727 to 0.0337 as we go fromR = 3 to

R = 5. All plots are at time = 2 for zero initial conditions.
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Appendix A

Maximum Likelihood Estimation in
Markov Chains

A.1 MLE’s for k-th order Markov chain with ) symbols

Assume that we have a sequerc€,, ..., Xy} generated by &-th order Markov chain where
every experiment haQ possible outcomes.

Assume that eaclX; takes values from a sétd,,, }9_, of Q distinct symbols. For @-th
order Markov chainX; depends ort outcomes prior to thg-th outcome. As in the earlier case
with two possible outcomes, here also the Markov propertkkin only if ; > k. Let S; be
a subsequence @f outcomes prior to thg-th outcome. Since each of thekeoutcomes in the
subsequence is drawn from the $et,,}“_,, there areQ" possible subsequencés Let these
sequences be denoted {in}gl. Let us scan the given sequen(ck; } ', from left to right and
record the followingQ**! numbers:

{{ns,a,, = # of times we observeS;A,," }ﬁzl}ffl
Form =1tom = Q -1, IetpSiAm = P(Am|51) LetpSiAQ = P(AQ|Sl) =1- ZrQn;ll PS; Am

andp;, = P({X,}*_,). Inwords,p; is the probability of observing the firstterms of the{ X } [,
sequence. Putting everything together, the log likelihfmodhe whole sequence is

Q" Q-1 QF Q-1
L=logps+ Y |> nsanlog(ps.a,)| + Y ns.aqlog <1 - psiAm> :
i=1 |m=1 i=1 m=1

Let us maximizeL over allpg, 4,,. Taking partial derivatives of both sides with respecpio;,,
for one particulafm, i), we get

91



SettingdL/0ps, a,, = 0 to maximizeL, we get

NS Am 1S Ag
= o ,
PSiAm — 21 PSiAm

Note that for a particular value @f the above equation represents a sepof 1 linear equations
in @ — 1 unknowns (the probabilities to be estimated), which givéhesfollowing result:

(A.1)

Nsid _ NSy _ MSidg __ MSidg

= = & . (A.2)
PsiAr PSiA Psidg  1=3% \psa,

Solving the linear system given Hy (A.1) and (A.2), we getNHeE for the transition probability:
nS; A

ﬁSiAm - Q .

We can then use the collection of gl to find the maximum value of the log likelihoad
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Appendix B

Expressions in the Markov Tree model

B.1 Expressions foru; » and o, 5

All parameters required to compute the MT price given by ¢équa4.10) depend on three unob-
servable parametesso* ando~ throughy; » andoy .

Lhign—D(g1+q) +1a(qg-1(g1 =3¢ +3) + ¢ — 1)
(-1 —q1 +1)?

n (n—1)(lhg (1 -2q)+11(2¢1 —1)(q1 — 1))

g1—q+1 ’

= —lo +

o= —(n—1)g_1(q. — 1) {(h (l%(4Q—1(C]—1 +2) = 3) =20l 1(4g-1(q-1 +2) = 9) + % (4g-1(q-1 4+ 2) — 11))
—4(qo1 — D@ (= 120)* = (qor — V(L = 3102 (o1 — @ + 1)
@) {Z% (4 + 40— 1) + g1 (@00 — 8) + 1) + (g1 — D)
=20l (g1 + q1%(6q1 = 5) + 1 (5(qr — 2)qn +3) — * + q1)

+ 12, (¢-1° + ¢-1*(10g1 = 13) + g1 (1 — 12)@1 + 13) + (1 — D) [ (g-1 —qn + 1) 7*

i (-181 —2) — (1 — 1)*) —l1g-1(q-1 + @1 — 2)

=1, +
fa =t (g1 —q1 +1)?
0= g (1= 20) + (21— (g~ 1)
g1 —q +1 ’

‘73 =—(n—1)q(p—1) [Ch (l%(4Q—1(Q—1 +2) =3) =2l 1(4g-1(q1 +2) = 9) + l2_1(4CI—1(C]—1 +2) - 11))
—4(g1 = Db = 10)° = (g =) =31 | (g —q +1)7°

— g [lf (-1*(1 = 2) + 21 (10(q1 — V) + 1) + ¢1* — 1)
— 2511 (¢1° (51 — 4) + ¢1(6(q1 — 2)q1 +5) + (@1 — 3) (@1 — 1)qn)

+ 12, (g1*(91 = 10) + ¢1(2(e1 — gt 13) + (a1 — V(@1 — 3 +4)) [ (g1 — a1 +1)7"



where

l1:U+VAt, l_lzd_VAt7 l():O'\/At

67’At _ e—lk

qk = , for ke{-1,0,1}

ek — el

andAt = T'/N whereT is the time in years to expiry andl is the number of steps in the MT.

B.2 Gradient vector for the MT objective function.

For an option with strike/{ and time to expiratior?’, the error between the MT price and the
market price is

= VAT - P (x, B

whereV2" is the market price of the optiod;™™ (x, M) is the MT model price, ang™" =
(0,0%,07). From the above equation, we get

e _E)FMT(X, gM™) de _8FMT(X,,8MT)

do oo " 0o Oo*

Using [4.10), we expresgMT (x, gMT) as

FMY(x, BM)e™ = qo fi(p1, 01) + (1 = qo) fo(pa, 02), (B.1)

where )

filpi, 07) = Spexp (% + Ni) O(z;) — KO(z42),

andzxy, ..., x4 are given in[(4.101) andy, j, 01, 02 are given in Appendik BI1.
Partial with respect to first parameter 9FMT /9o . To calculatéle,, /0o, we first need to
calculated FMT /9o

OFMT ofi  0fa dqo dfo
s — ZJLr g2 40 o ZJe
“ oo 0 < > i do (= fo)+ Oo

Jdo  Jdo
rAt 260\/5 + erAtJrZU\/E)

do

(9fl o 0'1-2 830, 1 80'12 a,uz 827“_2
Jo — C0eP (7 * “i) (N ()5, + (5 9o &;) ‘1’@')) — KN (i) =5 =

From the definition ofr;’s in sectio 4.2.13, we get

(e%m _ 1)2

Odo = —\/Ee”m (6

8x1_8x3_ 1%

Ory Oz 1 8@_69&4_1%
do do oy 0o’

do o oy do

and
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and from the expressions fpf - ando—f’Q, we know that

8 2
T2 o, U0y, Y2
do do do

Partial with respect to second and third parametersdFMT /8o *. We now move on to
calculatingde,,,/do* for which we first need to calculat&¥™7 /9o*. We get

erTaFMT _ (afl af2> + aQO af2

(fi = fa) +

Jo+ dot ot Jo* do*’

wheredqy/00* = 0. The above expressions consists of the tedfisdo* andd f,/do* that can
in turn be expressed as

afl . 0'7;2 8:151 1 80'22 8#1 8;EZ-+2
g = Soe G+ ) (Vg + (G + ek ) 00w ) — KNG 522

Fori = {1,2}, 0z;/00* is
% . 8xi+2 i 80'12
dot  Jo* 20; o+

andoxs 4 /00 are

axi+2 . 1 80'3 1 8,uz 1 1 SO
dot QU?MZQUJE o; 0ot 20} S\x )

7

whereX is the strike price of the option. To evaluate the above esgio|, we need the partials of
p12 andof , with respect tar™.

8M1,2 _ 8M1,2 ol I a,um oq 8M1,2 _ 8Ml,z ol i 6#1,2 g
oot oly 0ot Oq Oot’  Oo~ ol_y o=  0q_, Do~
(‘30%’2 o 60%2 ol 80%,2 oq 8‘7%,2 8‘7%,2 ol 80%,2 0q_1

dot 9l o+ dq Dot o~ Ol do—  Ig_, Do~

The above expressions then depend on

o 2¢ —1)ga(n—1) (1 —q)(a +g-1)

oy I+qg1—aq (1+q1—q)?

O (2q1 — 1)g_1(n —1) N (1—q1)* = q-1(3¢1 — 2)

oy I+q1—q (1+q1—aq)? ’

Oy (2g1 —DA—g)n—1) @ +g1B+g1—3q)—1
oy I+q1—q (1+q¢g1—q)? 7
pe (21 =11 —q)(n—1) ¢1(2—q1 —q-1)

ol_, I4+q1—q (14+qg1—q)?
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We also know thabl, /0o = vV At anddl_, /0o~ = v/ At. To completely specify the partials of
12 With respect td_; ; we only need the partials of the tree probabiliies; with respect tar®.
We calculate:

911 _ At VA (

+ +
erAt 2e° VAt 67‘At+2a VAL
80 +

(e%i\/E —1)2
We are now left with the task of defining the partialsmif2 with respect td ».

o7 (n—1)g1(1 — q1) ((=2_1(=9+4q_1(2+ q_1)) + 20:(=3 + 4912+ ¢-1))) 1)

ol (1 —q1 +1)3
(= 1)ga (1= q) (20 = 31) (=1 4 g1) +8(h = 1) (=1 +g-1)(01)?)

(g1 —q +1)3

n (1—aq1) (—2121((g—1)* + @1 — (1)* + (-1)* (=5 + 6q1) + ¢-1(3+ 5(=2+ q1)q1)))
(1 —qn +1)*

N (I —aq1) 2L ((g-1)* + (=14 q)q + (g-1)*(=1 4 2q1) + ¢_1(1 + (=8 + 9q1))))
(-1 —q +1)* '

Similarly,

doi _ (n=1)g1 (1 —q1) (211 (=11 4+ 491 (24 ¢-1)) = 2L(=9 +4¢-1(2 + ¢-1)))@1)
ol (-1 —q +1)3
(n—=1)g (1 —q) (6(Li =3L1)(=1+g1) +8(L —11)(=1+q-1)(q1)?)
(-1 —q +1)3
(1—q) 2h((g-1)’ + @1 — (¢1)* + (-)*(=5 + 6q1) + g1 (3 +5(=2+ q1)q1)))

(-1 —q +1)*

+(1 —q1) (211 ((g=1)* + (=1 + @)@ + (¢-1)* (=134 10¢1) + g1 (13 + (=124 ¢1)q1))
(-1 —q + 1)

+

Finally, we can expresdoss /0l o in terms ofdo? /01, 5 as

doz 0ot 211((q-1)* — (=1 +q)qu + q_1(—=1 4+ 8q1 — 8(q1)?))

o, — al, (I+qg1—aq)?
+2L1(_(_1 +q)@ + (g-1)*(—=3+4q1) + ¢-1(3 — 8¢1 + 4(q1)?))
(1+qg1—q)3
and
do; _ do} " 20(— (=14 @)@ + (g-1)* (=3 +4q1) + ¢-1(3 — 8¢1 + 4(q1)?))
Oly Ol (14+qg1—q)?
201((q-1)*(9 — 8q1) — (=1 + q1)q1 + q-1(—9 + 8q1))
+ 3 .
(1+q1—q)
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We now move on to the expressions for the partials of the neeis with respect to the tree proba-
bilities:
80% -5 2 5
o0 I+g1—aq) [251l—1(—(_1 + @) (1 +q) +4(=1+n)(g-1)" (-1 +2q1)
+q1(=1+q) (3 = 15g1 +4(q1)* + n(=3 +2q1 + (01)?))
+(g-1)* (n(=19 + 361 — 16(q1)*) +4(5 — 9q1 + 4(q)*))
+(q-1)%(9 — 15g1 — 8(q1)* + 12(q1)* + n(13 — 36¢1 + 35(q1)* — 12(q1)?))
+(q-1)*(=9 + 20(q1)* — 8(q1)® + n(=5 + 15¢1 — 20(q1)* + 8(¢1)?)))
H2 (—(=1+ @)’ (1 + @) = 4(=1+71)(g-1)° (=1 + 2q1)
—q_1 (=14 q)(19 — 9q1 — 2(q1)* + n(7 — 10¢; + 3(q1)?))
H(g1) (=26 + 361 — 16(q1)? + (25 — 36q; + 16(g1)2)) — (g-1)*(—35 + 18, + 20(q1)* — 8(q1)?
+n(9 4 5¢1 — 20(q1)* + 8(q1)*)) + (¢-1)* (=31 + 151 4 26(q1)* — 12(q)°
+n(=23 4+ 60g1 — 49(q1)* + 12(01)°))) + (= (=1 + @)*(1 + 1) — 4(=1 +n)(g-1)* (=1 + 2q1)
+q1(=1+q)(5+n+q — 6ng — 14(q1)* + 5n(q1)?)
+(g-1)"(—2(9 — 18¢1 + 8(q1)*) + n(17 — 361 + 16(¢1)*))
+(g-1)° (=9 +22q1 — 20(q1)* + 8(q1)* + (15 — 29¢1 + 20(q1)* — 8(1)?))

+(g-1)*(—11 4 271 — 6(q1)* — 12(q1)” + n(1 + 12q1 — 25(q1)* + 12(q)?))

5;_11 =(14+q1—q) (a—1) [ — (1 +q1—q)(=3(=1+n)g_1(—(y — 3_)*(=1+q_1)
(P (=114 4g-1(2+q-1)) — 2L 1 (=9 +4q 1(2+q_1) + (-3 +4q1(2+q¢_1))q
~A(h = 1) (<14 ) (@)*) + B+ 3(3-1)° — 81 +9(@)” + -2 (~2 + 4ay)
—2L1-4(3 + 3(Q—1)2 +5(=2+q)qg1 +2q_1(—5+6q1)) + 131(13 + 3(q_1)2 —12¢, + (Q1)2
+q-1(—264+20¢1))) + (=1 +n)(1+ g1 — q1)* (11 (=1 4 2¢-1)(9 — (11 4 6¢-1)q1 + 4(q1)?)
FB(—1+3q1 — 12(q-1)*q1 — 4(q1)* +2¢1(1 — 8q1 + 4(q1)?))
+2014(3 — 91 + 12(61—1)2(]1 + 4(q1)2 —2g.1(3 — 81 + 4((]1)2)))
+4(% 1 ((q21)* + (=14 q1)q1 + (g-1)* (=13 + 10¢1) + ¢-1(13 + (=12 + q1)q1))
=201 ((g1)° + @1 = (@1)* + (¢-1)* (=5 +6q1) + ¢-1(3 +5(=2 + q1)q1))

+5((g-1)* + (=1 + q)a + (g-1)* (=1 + 2¢1) + g1 (1 + @1 (=8 4 9q1))))

do2  Oo?
8%2 B 8;;1 — (g1 —a) |21+ 8(q-1) + (01)” = 2q-1(=9 + Tqr) + (¢-1)*(—27 + 161))
1 1

=201 (1 +4(q-1)° = (@1)® + (g-1)* (=13 + 161) + 2¢_1(1 — 5q1 + 2(q1)?))
FE(=1+ (@) + (g-1)*(—11+160) + 201(=3+ a1 + 4(@1)?))]
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do; Dot
g1 g1
—2l31 4 (=3 + 14q1 — 15(q1)* + 4(q1)” + (q-1)* (=3 + 4q1) + 21 (6 — 15¢1 + 8(q1)?))

~B(1+ (g-1)* — 6q1 + 13(q1)* — 8(q1)® — 2¢_1(2 — 91 + 8(611)2))]

+(1+q — a) 531(_9 + 14q1 — 5(q1)* + (9—1)2(_9 +8¢1) + 2q_1(18 — 25¢; + 8(q1)?))

B.3 Delta neutral in the MT model.

The option Delta for the MT model is given by

MT
o8 et (-2

850 ? 95, 850
where of ) . ) .
; g o
L — D il A — Nz i = N(x: B.2
g —en (G )+ N ew (G 4n) - NMago (@2
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