
Direct and inverse scattering of extended objects

Arnold D. Kim

Department of Applied Mathematics, University of California, Merced

Supported by AFOSR and NSF

September 17, 2020



Direct scattering problem

Compute the field scattered by a finite-sized object(s) due to some controlled
illumination.



Inverse scattering problem

Reconstruct the finite-sized object(s) from measurements of the scattered field.



Governing PDEs and their fundamental solutions
The “fields” we consider are solutions to the Helmholtz equation,

(𝛥 + 𝑘2)𝑢 = 0,

or the negative/modified Helmholtz equation,

(𝛥 − 𝑘2)𝑢 = 0.

We make extensive use of the fundamental solution
Φ(𝑥, 𝑥 ′) satisfying

(𝛥 ± 𝑘2)Φ = −𝛿(𝑥 − 𝑥 ′),

along with appropriate “outgoing” radiation conditions.



Direct scattering problem for one object

We model one object as a simply connected, open set 𝐷 ⊂ R𝑛 (𝑛 = 2, 3) with boundary
𝐵. Let �̄� = 𝐷 ∪ 𝐵. The exterior is then 𝐸 = R𝑛\�̄�.

We consider the following boundary-value
problem for (modified) Helmholtz’s equa-
tion,

(𝛥 ± 𝑘20)𝑢 = 0, in 𝐸,

(𝛥 ± 𝑘21)𝑣 = 0, in 𝐷,

𝑢 = 𝑣 and 𝜕𝑛𝑢 = 𝜕𝑛𝑣 on 𝐵,

along with appropriate radiation condi-
tions on 𝑢.



Solving the direct scattering problem

We use the Method of Fundamental Solutions (MFS) to solve the direct scattering
problem.

I Introduced as a numerical method by Mathon and Johnston (1977).

I Approximate the interior and scattered fields by a superposition of finitely many
fundamental solutions, each of which is an exact solution of the PDE.

I Strength of each fundamental solution is determined through the boundary
conditions.



Exterior solution
The field 𝑢 exterior to the object satisfies

(𝛥 ± 𝑘20)𝑢(𝑥) = 0 𝑥 ∈ 𝐸.

Let Φ0(𝑥, 𝑥 ′) denote the fundamental solution satisfying

(𝛥 ± 𝑘20)Φ0 = −𝛿(𝑥 − 𝑥 ′).

Suppose 𝑥 ′ ∈ 𝐷. Then Φ0 satisfies

(𝛥 ± 𝑘20)Φ0 = 0 𝑥 ∈ 𝐸.

Hence, Φ0 exactly satisfies the PDE gov-
erning the exterior solution.



Interior solution
The field 𝑣 interior to the object satisfies

(𝛥 ± 𝑘21)𝑣 = 0 in 𝐷.

Let Φ1(𝑥, 𝑥 ′) denote the fundamental solution satisfying

(𝛥 ± 𝑘21)Φ1 = −𝛿(𝑥 − 𝑥 ′).

Suppose 𝑥 ′ ∈ 𝐸 . Then Φ1 satisfies

(𝛥 ± 𝑘21)Φ1 = 0 𝑥 ∈ 𝐷.

Hence, Φ1 exactly satisfies the PDE gov-
erning the interior solution.



MFS: field approximations

The exterior field with wavenumber 𝑘0 is approxi-
mated by

𝑢(𝑥) ≈ 𝑢inc(𝑥) +
𝑀∑︁
𝑚=1

Φ0(𝑥, 𝜌ext
𝑚 )𝑐ext

𝑚 .

The interior field with wavenumber 𝑘1 is approxi-
mated by

𝑣(𝑥) ≈
𝑀∑︁
𝑚=1

Φ1(𝑥, 𝜌int
𝑚 )𝑐int

𝑚 .



MFS: boundary conditions

Using the approximations,

𝑢(𝑥) ≈ 𝑢inc(𝑥) +
𝑀∑︁
𝑚=1

Φ0(𝑥, 𝜌ext
𝑚 )𝑐ext

𝑚 and 𝑣(𝑥) ≈
𝑀∑︁
𝑚=1

Φ1(𝑥, 𝜌int
𝑚 )𝑐int

𝑚 ,

we require

𝑢(𝜌bdy
𝑚 ) = 𝑣(𝜌bdy

𝑚 ) and 𝜕𝑛𝑢(𝜌bdy
𝑚 ) = 𝜕𝑛𝑣(𝜌bdy

𝑚 ), 𝑚 = 1, · · · , 𝑀.

This collocation method yields a 2𝑀 × 2𝑀 linear system for the expansion coefficients,
𝑐ext
𝑚 and 𝑐int

𝑚 for 𝑚 = 1, · · · , 𝑀.



Example simulation for Helmholtz’s equation
Scattering by a dielectric cylinder due to a point source (above).



Comments on MFS for the direct scattering problem

I Useful for simulating measurements.

This method is meshless and allows for easy evaluation wherever measurements
are taken.

I Easy to implement and extend to multiple objects.

The key is determining an appropriate set of boundary points and the
corresponding unit outward normals.

I There is an “art” to choosing where to put the exterior/interior points.

This choice affects accuracy and conditioning of the linear system.

I Error analysis is complicated.

Empirical results show very high accuracy. Analysis of “convergence” is
complicated.



Inverse scattering for array imaging

An array of sources/receivers conduct a suite of experiments leading to the
measurement matrix 𝐵.



Inverse scattering for array imaging

Each element of the array illuminates the medium.



Inverse scattering for array imaging

All elements of the array measures the scattered fields.



Measurement matrix

I The entire suite of experiments leads to the measurement matrix 𝐵 ∈ C𝑀×𝑀 .

I The matrix entry 𝑏𝑚𝑛 corresponds to a source at array element 𝑚 measured at
array element 𝑛.

I The rows of 𝐵 are manifest from the spatial diversity at the source due to
illuminations from different spatial locations.

I The columns of 𝐵 are manifest from the spatial diversity at the receiver due to
measurements of the scattered field at different spatial locations.



The inverse scattering problem

Given the measurement matrix 𝐵, reconstruct properties of the scattering objects in
the medium, e.g. location, shape, material properties, etc.

I Here we focus on location and shape of objects.

I The inverse scattering problem requires a model for the measurements.

I We introduce a point-based model based on fundamental solutions.

I This point-based model allows us to solve the inverse scattering problem using
elementary linear algebra methods.



A little bit of scattering theory

Scattering due to some potential 𝑉 is governed by

(𝛥 + 𝑘20)𝑢 = −𝑘20𝑉𝑢.

Using the fundamental solution, we find that the solution 𝑢 is given by

𝑢 = 𝑢inc + 𝑘20
∫
𝐷

Φ0(𝑥, 𝑥 ′)𝑉 (𝑥 ′)𝑢(𝑥 ′)d𝑥 ′,

which is called the Lippmann-Schwinger equation.

The first Born approximation is given by

𝑢 ≈ 𝑢inc + 𝑘20
∫
𝐷

Φ0(𝑥, 𝑥 ′)𝑉 (𝑥 ′)𝑢inc(𝑥 ′)d𝑥 ′,



Born approximation
Suppose we apply a numerical quadrature rule to the first Born approximation:

𝑢Born = 𝑢inc + 𝑘20
∫
𝐷

Φ0(𝑥, 𝑥 ′)𝑉 (𝑥 ′)𝑢inc(𝑥 ′)d𝑥 ′

≈ 𝑢inc + 𝑘20
𝑄∑︁
𝑞=1

Φ0(𝑥, 𝜌𝑞)𝑉 (𝜌𝑞)𝑢inc(𝜌𝑞)𝑤𝑞

≈ 𝑢inc +
𝑄∑︁
𝑞=1

Φ0(𝑥, 𝜌𝑞)𝑢inc(𝜌𝑞)𝛼𝑞 .

Upon discretization by numerical quadrature, the first Born approximation yields a
superposition of fundamental solutions with complex scattering amplitudes 𝛼𝑞.



Point-based model of measurements

I We introduce a mesh over an imaging
window with grid points 𝝆𝑘 for
𝑘 = 1, · · · , 𝐾.

I Each grid point is a “secondary
point-source” with corresponding
complex amplitude, 𝛼𝑘 .

I When the secondary point-source is
inside the object, 𝛼𝑘 ≠ 0. Otherwise,
𝛼𝑘 = 0.

I The (sparse) 𝐾-vector x whose
components are 𝛼𝑘 for 𝑘 = 1, · · · , 𝐾
indicate the location and shape of the
objects.

Imaging window



Modeling the data

Let 𝑈 inc
𝑚 (𝜌𝑘) denote the 𝑚th incident field

evaluated at 𝜌𝑘 .

Φ0(𝑥𝑛; 𝜌𝑘)𝑈 inc
𝑚 (𝜌𝑘)𝛼𝑘 is the field radiating

from 𝜌𝑘 that is measured at 𝑥𝑛.

The 𝑛th column of the data matrix 𝐵 is given by

b𝑛 =


𝑈 inc
1 (𝜌1) · · · 𝑈 inc

1 (𝜌𝐾 )
...

. . .
...

𝑈 inc
𝑀
(𝜌1) · · · 𝑈 inc

𝑀
(𝜌𝐾 )

︸                               ︷︷                               ︸
𝐴


Φ0(𝑥𝑛; 𝜌1)

. . .

Φ0(𝑥𝑛; 𝜌𝐾 )

︸                                     ︷︷                                     ︸
Λ𝑛


𝛼1
...

𝛼𝐾

︸︷︷︸
𝜶

.
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Φ0(𝑥𝑛; 𝜌1)

. . .

Φ0(𝑥𝑛; 𝜌𝐾 )

︸                                     ︷︷                                     ︸
Λ𝑛


𝛼1
...

𝛼𝐾

︸︷︷︸
𝜶

.



Modeling the data
Using this model, we have

𝐵 = 𝐴[Λ1𝜶 |Λ2𝜶 | · · · |Λ𝑁𝜶] .

I According to this model, the data matrix 𝐵 is given by linear combinations of the
columns of the 𝑀 × 𝐾 matrix, 𝐴.

I The particular columns of 𝐴 that are used in 𝐵 are set by the non-zero
components of the vector 𝜶.

I The non-zero components of 𝜶 correspond to the grid points inside of the objects.

I It is therefore sufficient to determine which columns of 𝐴 are used in 𝐵 to
determine the location and shape of the objects.



Multiple signal classification (MUSIC)
We compute the singular value decomposition (SVD) of 𝐵 to obtain

𝐵 = 𝐴 [Λ1 |Λ2 | · · · |Λ𝑁 ] 𝜶 = 𝑈Σ𝑉∗.

I The columns of 𝑈 that correspond to first 𝑟 significant singular values form an
orthogonal basis for the span of the columns of 𝐴, which is called the signal
subspace.

I Let 𝑈 = 𝑈 (:, 1 : 𝑟). Then 𝑃 = 𝐼 −𝑈𝑈∗ is the orthogonal projection matrix to the
signal subspace.

I Let a𝑘 denote the 𝑘 th column of 𝐴. Then [𝑘 = ‖𝑃a𝑘 ‖/‖a𝑘 ‖ gives the fraction of
the column of a𝑘 that is not in the signal subspace.

I A plot of 1/[𝑘 for each grid point, 𝝆𝑘 for 𝑘 = 1, · · · , 𝐾, produces an image that will
show the location and shape of the objects.



MUSIC imaging algorithm

1. Compute
[U, S, V] = svd(B).

2. Determine the first r significant singular values, and then compute

P = eye(M) − U(:, 1 : r)U(:, 1 : r) ′.

3. Given mesh of an imaging window with grid points 𝝆𝑘 for 𝑘 = 1, · · · , 𝐾, we
compute

a_k = u_inc(rho_k; x_m)

and then compute
eta(k) = norm(P ∗ a_k)/norm(a_k).

4. Plot min(eta)./eta.



Simulations
We consider a 2.5 GHz array imaging system.



Array imaging results



Imaging with spatially modulated light

I Introduced by Cuccia et al. (2005) as
a means for imaging tissues.

I Projects Fourier patterns of light onto
the tissue sample.

I Images in the spatial frequency
domain.

I Intuitively, the higher spatial
frequencies have a shorter
penetration depth than lower spatial
frequencies because tissues act as a
low-pass filter. Gioux, Mazhar, and Cuccia (2019)



Diffusion of spatially modulated light in tissues

S. Rohde and ADK (2017) show that the diffuse
reflectance is given by

𝑅𝑚(𝑥𝑛) ∼ 𝑐0(𝐼0 + 𝐼1𝑒i2𝜋 𝑓𝑚𝑥𝑛) + 𝑐13𝐷𝜕𝑧𝑈 (𝑥𝑛),

with 𝑈 satisfying the diffusion approximation

−∇ · (𝐷∇𝑈) + `𝑎𝑈 = 0 in 𝑧 > 0,

𝑈 = 𝐼0 + 𝐼1𝑒i2𝜋 𝑓𝑚𝑥 on 𝑧 = 0,

with 𝑐0 and 𝑐1 determined using asymptotic analy-
sis.



Diffusion of spatially modulated light in tissues

Upon solution of the following boundary value
problem,

−∇ · (𝐷∇𝑈) + `𝑎𝑈 = 0 in 𝑧 > 0,

𝑈 = 𝐼0 + 𝐼1𝑒i2𝜋 𝑓𝑚𝑥 on 𝑧 = 0,

we assume we can isolate

𝑅𝑚(𝑥𝑛) = −𝐷𝜕𝑧𝑈 (𝑥𝑛, 0).

in measurements.

Scattering and absorbing objects have different
values for the diffusion coefficient, 𝐷 and the ab-
sorption coefficient, `𝑎, respectively.



Measurement matrix

Suppose we illuminate the medium with 𝑀 spatial frequencies, 𝑓𝑚 for 𝑚 = 1, · · · , 𝑀
and measure the diffuse reflectance 𝑅 at 𝑁 locations, 𝑥𝑛 for 𝑛 = 1, · · · , 𝑁 .

Let 𝑅𝑚(𝑥𝑛) denote the complex diffuse reflectance (in phase and quadrature
components) for spatial frequency 𝑓𝑚 at detector location 𝑥𝑛.

We organize our measurements as the following 𝑀 × 𝑁 matrix,

𝐵 =


𝑅1(𝑥1) · · · 𝑅1(𝑥𝑁 )
𝑅2(𝑥1) · · · 𝑅2(𝑥𝑁 )
...

. . .
...

𝑅𝑀 (𝑥1) · · · 𝑅𝑀 (𝑥𝑁 )


.

We seek to recover the location and shape of the objects from the matrix 𝐵.



Point-based model of measurements

Imaging window

I We introduce a mesh over an imaging
window with grid points 𝝆𝑘 for
𝑘 = 1, · · · , 𝐾.

I Each grid point is a “secondary
point-source” with corresponding
yield, 𝜙𝑘 .

I When the secondary point-source is
inside the object, 𝜙𝑘 ≠ 0. Otherwise,
𝜙𝑘 = 0.



Point-based model of measurements

Using the same ideas we used for waves, we find that the 𝑛th column of the data
matrix 𝐵 is given by

b𝑛 =


𝑅1(𝑥𝑛)
...

𝑅𝑀 (𝑥𝑚)

 =

𝑈1(𝝆1) · · · 𝑈1(𝝆𝐾 )

...
. . .

...

𝑈𝑀 (𝝆1) · · · 𝑈𝑀 (𝝆𝐾 )

︸                              ︷︷                              ︸
𝐴


Φ0(𝑥𝑛; 𝝆1)

. . .

Φ0(𝑥𝑛; 𝝆𝐾 )

︸                                     ︷︷                                     ︸
Λ𝑛


𝜙1
...

𝜙𝐾

︸︷︷︸
𝝓

.

The model for the data matrix 𝐵 is

𝐵 = 𝐴 [Λ1𝝓 |Λ2𝝓 | · · · |Λ𝑁 𝝓] = 𝐴 [Λ1 |Λ2 | · · · |Λ𝑁 ] 𝝓.

This is exactly the same algebraic structure as before! We use MUSIC for the inverse
scattering problem.



Simulations

I Background optical properties are `′𝑠 = 1mm−1 and `𝑎 = 0.01mm−1, so that
𝑘0 =

√︁
3`𝑎`

′
𝑠 = 0.1732mm−1.

I We illuminate using 100 spatial frequencies (more than usual).

I There are 501 detectors/pixels.



Numerical results: scattering and absorbing objects

Left and right objects are scattering perturbations and center object is an absorbing
object.
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Conclusions

I The Method of Fundamental Solutions (MFS) is effective for solving the direct
scattering problem for extended objects.

I MUSIC is a simple and effective method to recover the location and support of
extended objects.

I For diffusive waves, MUSIC is depth-limited.

I We are currently studying methods that seek to improve the performance of
MUSIC for a broad variety of applications.


