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Today’s objective

Consider a three-dimensional domain � with boundary �.

The solution to Laplace’s equation is given by

D(G) = − 1

4c

∫
�

=(H) · (G − H)
|G − H |3 D(H)dfH︸                                    ︷︷                                    ︸

double-layer potential

+ 1

4c

∫
�

1

|G − H |
mD

m=
(H)dfH︸                          ︷︷                          ︸

single-layer potential

, G ∈ �.

We want a method to accurately compute the representation formula.

This requires numerical integration over two-dimensional surfaces.



Guiding principle for this talk

Numerical integration works really well for nearly constant functions†.

†And, it does not work as well for less nearly constant functions.



Numerical integration on the sphere
Atkinson (1982) introduced the product Gaussian quadrature rule:

� ( 5 ) =
∫ 2c

0

∫ c

0
5 (\, i) sin \d\di

=

∫ 2c

0

∫ 1

−1
5 (arccos I, i)dIdi (substitute I = cos \)

≈ �" ( 5 ) ≡
c

"

2"∑
9=1

"∑
8=1

F8 5 (arccos I8 , i 9).

I I8 and F8 for 8 = 1, · · · , " are the "-point Gauss-Legendre quadrature rule points
and weights.

I i 9 = ( 9 − 1)c/" are the 2"-point periodic trapezoid rule points.



Why the substitution I = cos \?
What happens when we substitute I = cos \ into the integral below?

4c =

∫ 2c

0

∫ c

0
sin \d\di

We substitute I = cos \ and dI = sin \d\ and find that

4c =

∫ 2c

0

∫ 1

−1
1dIdi.

Since 1 is a constant, this substitution is really good for numerical integration!
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Another example: Surface area of an oblate spheroid∫ 2c

0

∫ c

0

0
√
2

√
02 + 22 + (02 − 22) cos 2\︸                                   ︷︷                                   ︸

5 (\,i)

sin \d\di = 2c02 + c 2
2

4
log

(
1 + 4
1 − 4

)
,

with 42 = 1 − 22/02 and 0 ≥ 2.

5 (\, i) sin \ 5 (arccos I, i)



Another example: Surface area of an oblate spheroid
We apply the product Gaussian quadrature rule to the surface area integral for an
oblate spheroid and obtain the following result.



Product Gaussian quadrature rule

I It is for numerical integration on the sphere.

I Substituting I = cos \ makes the function to be integrated more nearly constant
which is really good for numerical integratrion.

I It works very well!

I So why not use it for the representation formula?



Poisson’s formula
The solution to Laplace’s equation in the sphere A < 0 with Dirichlet boundary data
D = 5 on A = 0 is given by

D(G) = 1

4c

∫
|H |=0

02 − |G |2
|G − H |3 5 (H)dfH , |G | < 0.

In spherical coordinates, we have

D(A, \, i) = 1

4c

∫ 2c

0

∫ c

0

0(02 − A2) 5 (B, C) sin BdBdC[
02 + A2 − 20A (cos \ cos B + sin \ sin B cos(i − C))

]3/2 .



Poisson’s formula along the +I-axis
To keep things simple, we focus on computing the solution along the +I-axis
corresponding to \ = 0:

D(A, 0, ·) = 1

4c

∫ 2c

0

∫ c

0

0(02 − A2) 5 (B, C) sin BdBdC(
02 + A2 − 20A cos B

)3/2 .

On \ = 0, we have a so-called “coordinate singularity,” so there is no sense of i.

Working example. Substituting the harmonic function D = (cos G + cos H)4I , we find

24A = 0
02 − A2
4c

∫ 2c

0

∫ c

0

[cos(0 sin B cos C) + cos(0 sin B sin C)] 40 cos B(
02 + A2 − 20A cos B

)3/2 sin BdBdC.



Working example: error results
With " = 32, we obtain the following error results.



What’s the problem?

What is the cause this large error as A → 0−?∫ 2c

0

∫ c

0

[cos(0 sin B cos C) + cos(0 sin B sin C)] 40 cos B(
02 + A2 − 20A cos B

)3/2 sin BdBdC.
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0

∫ c

0

[cos(0 sin B cos C) + cos(0 sin B sin C)] 40 cos B(
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)3/2 sin BdBdC.



What’s the problem?

After substituting I = cos \, we find that
1

(02 + A2 − 20AI)3/2
∼ 1

(0 − A)3 as I → 1−

(B→ 0+).

Since A < 0 we never reach
the singularity, but we are
nearly singular!

This function is smooth, but
far from nearly constant, so
numerical integration does not
work as well.
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Product Gaussian quadrature rule for Poisson’s formula

I It works well for points far from the boundary.

I The error becomes large as the point of evaluation approaches the boundary.

I We have identified the factor in Poisson’s formula causing the problem – the
function to be integrated rises rapidly on I = 1 (B = 0) as A → 0.

I Because of this nearly singular peak, the function to be integrated is far from
nearly constant, so numerical integration does not work so well.



Look at Poisson’s formula again

D(A, 0, ·) = 0(02 − A2)
4c

∫ 2c

0

∫ c

0

sin B(
02 + A2 − 20A cos B

)3/2 5 (B, C)dBdC.

If we do not make the substitution, I = cos B, then we have
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)3/2 → 0 as B→ 0 when A < 0.

So why not integrate with respect to B instead of I?
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4c

∫ 2c

0

∫ c

0

sin B(
02 + A2 − 20A cos B

)3/2 5 (B, C)dBdC.
If we do not make the substitution, I = cos B, then we have

sin B(
02 + A2 − 20A cos B

)3/2 → 0 as B→ 0 when A < 0.

So why not integrate with respect to B instead of I?



Modified product Gaussian quadrature rule
Instead of substituting I = cos \, we map the Gauss-Legendre quadrature rule from
[−1, 1] to [0, c] and obtain

� ( 5 ) =
∫ 2c

0

∫ c

0
5 (\, i) sin \d\di

≈ �̃" ( 5 ) ≡
c

"

2"∑
9=1

"∑
8=1

cF8

2
5

(
c(I8 + 1)

2
, i 9

)
sin

(
c(I8 + 1)

2

)
.

Since sin B ∼ B as B→ 0, this modification will kill the nearly singular growth on B = 0.



Example: error results
With " = 32, we obtain the following error results.



Modified product Gaussian quadrature for Poisson’s formula

I This modification is an improvement over the product Gaussian quadrature rule.

I The error still becomes large as the point of evaluation approaches the boundary,
but the height and width of that region is greatly reduced compared with the
product Gaussian quadrature rule.

I Keeping the factor of sin B helps, but if we can make the function to be integrated
vanish more rapidly as B→ 0, that would be even better.



Subtraction method
A constant is harmonic, so

� =
0(02 − A2)

4c

∫ 2c

0

∫ c

0

� sin B(
02 + A2 − 20A cos B

)3/2dBdC

We add and subtract the constant 5 (0, ·) (the boundary data on B = 0) in Poisson’s
formula and obtain

D(A, 0, ·) = 5 (0, ·) + 0(0
2 − A2)
4c

∫ 2c

0

∫ c

0

[ 5 (B, C) − 5 (0, ·)] sin B(
02 + A2 − 20A cos B

)3/2dBdC.
For our example, [ 5 (B, C) − 5 (0, ·)] = $ (B2) as B→ 0.
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4c

∫ 2c

0
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Plots of the function
Let

 ̃ (B; A) = sin B

(02 + A2 − 20A cos B)3/2
.
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Working example: error results using the subtraction method
With " = 32, we obtain the following error results.



Generalizing the method

I Using subtraction and the modified product Gaussian quadrature rule appears to
be a good method for evaluating Poisson’s formula.

I The key to this method is evaluating Poisson’s formula along the normal at the
north pole of the sphere.

I We can rotate the coordinate system so that any boundary point is the north pole.



Moving on
Poisson’s formula:

D(G) = 1

4c

∫
|H |=0

02 − |G |2
|G − H |3 5 (H)dfH , |G | < 0.

The representation formula:

D(G) = − 1

4c

∫
�

=(H) · (G − H)
|G − H |3 D(H)dfH +

1

4c

∫
�

1

|G − H |
mD

m=
(H)dfH , G ∈ �.

Assuming � can be mapped to the sphere, we can compute the double-layer potential
just like we did for Poisson’s formula.



Subtraction method for the double-layer potential
Gauss’ theorem gives

− 1

4c

∫
�

=(H) · (G − H)
|G − H |3 1dfH =


1 G ∈ �,
1
2 G ∈ �,
0 G ∉ �

This allows us to write

− 1

4c

∫
�

=(H) · (G − H)
|G − H |3 D(H)dfH = D(H∗) −

1

4c

∫
�

=(H) · (G − H)
|G − H |3 [D(H) − D(H∗)] dfH ,

since G ∈ �.



Close evaluation of the representation formula

When G is close to the boundary point H∗, we compute

D(G) = D(H∗) − 1

4c

∫
�

=(H) · (G − H)
|G − H |3 [D(H) − D(H∗)] dfH +

1

4c

∫
�

1

|G − H |
mD

m=
(H)dfH

using our modified product Gaussian quadrature rule.

To evaluate G near H∗, we set

G = H∗ − n=∗, 0 < n � 1,

and study the error as a function of n .



Example: peanut-shaped domain
For the harmonic function, D = (sin G + sin H)4I , we use " = 128 and obtain the
following results.



Some asymptotics
Using Gauss’ theorem, we find that

− 1

4c

∫
�

=(H) · (H∗ − H − n=∗)
|H∗ − H − n=∗ |3 1dfH =

{
1 n ≠ 0,
1
2 n = 0

This jump makes numerical integration of the double-layer potential challenging as
n → 0+.

In contrast,

D(H∗ − n=∗) − D(H∗) = − 1

4c

∫
�

=(H) · (H∗ − H − n=∗)
|H∗ − H − n=∗ |3 [D(H) − D(H∗)] dfH

+ 1

4c

∫
�

1

|H∗ − H − n=∗ |
mD

m=
(H)dfH = �(n).



Some more peanut results

A

B

A

B

A

B

product Gaussian quadrature

subtraction + modification



Summary

Numerical integration works really well for nearly constant functions.

I The function in the double-layer potential is far from nearly constant at close
evaluation points.

I We introduced subtraction and a modification to the product Gaussian quadrature
rule.

I Combining these two methods leads to a much more nearly constant function to
integrate.

I That is why this method works better.


