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Why study particles and stratification?
• Particles are present in the atmosphere, oceans, magma (i.e. pretty much 

everywhere). Where they end up has environmental and geological 
consequences.

• The fluids surrounding the droplets are rarely of a uniform density: 
temperature, salinity and composition all vary.

• We could consider and contrast 3 main types of particles:
- Solid
- Liquid (today)
- Porous (today)

• These processes can also be studied in the lab, but they are difficult to 
control. They are also difficult to study accurately in the field.

• Simulations are an excellent tool to use, in conjunction with  experiments 
and field observations.



Sample Applications:
• Storms, wildfire ash.
• Oil spills.
• Oceanic carbon cycle.

Phoenix, Az (2011)

Gulf of Mexico (2010)
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� Drops settling in stratification
- Without Marangoni effects
- With Marangoni effects

• Porous particles in stratification
- How to model the porosity
- Resulting delays
- Capturing complicated shapes

Contents of this presentation



This is applicable to oil drops settling in the ocean.

• We study drops settling in sharply stratified liquids.

• We use rd ≥ rl ≥  ru (stable, drops fall).

• The upper and lower layers are miscible.

• The surface tension of the two layers with the
drop may or may not be the same.

•We focus on density and surface tension effects
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rd ≥ rl ≥  ru

su ≠ sl or su = sl
R ~ h

• temperature variations    (1�C => |su – sl|/su = 0.3%) 
• salinity variations           (10g/kg => |su – sl|/su = 0.3%)

Drops settling in a sharp stratification 



Constant Surface Tension Ambient Results

• The drop first accelerates. 
•As it settles, the drop entrains surrounding fluid.
•At the transition, light upper fluid is drawn into denser lower fluid.
• The drop slows down significantly (can even stop).
• In the lower layer, the drop reaches its new terminal velocity.
Similar to a solid sphere, but less entrainment (slip instead of no-slip)
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Comparable solid spheres results: Srdic-Mitrovic et al. (1999), Abaid et al. 2004
Camassa et al. (2009)



Surface tension variations => Marangoni Effects

• Surface tension gradient => tangential motion.
• Larger surface tension pulls on smaller surface tension 
(hot liquid spreads on cold liquid).

Blue has small surface tension

Red has large surface tension

How does this affect the settling process?



Results for  sl < su

• Upper fluid is still entrained downward.

• Tangential flows are dominant and “suck” the drop in the lower layer.

Here su = 30g/s2 and sl = 29.85g/s2 , S= 0.005
Re = 4.1 and D = 2 
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Numerical Results for  sl > su

su= 30.075 g/s2

sl = 30.0 g/s2

su= 30.15 g/s2

sl = 30.0 g/s2

• Lower fluid is entrained upward
•Marangoni effects compete against gravity, even for Σ close to 0



Numerical Results for sl < su
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v ~ S in the viscous regime, 
v ~ S1/2 in the inertial regime

•We are in the transition regime with S0.66.
• Even for small S (~0.5%) the acceleration more than overcomes the delay due to 
entrained fluid.

Cancels delay at transition region



Long-term behavior
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Over the time scale of settling, drops may either be:
• accelerated if Σ  > 0
• decelerated if Σcr < Σ < 0.
• stuck if Σ < Σcr



Porous particles: Aggregates, marine snow, 
and carbon cycle

• Micro-organisms form aggregates in the oceans.

• Large aggregates are called marine snow.

• These porous particles are slightly denser
than water and settle slowly.

• They effectively stop in stratified ambients.

• These particles account for a large fraction  
of the carbon flux from surface to depth.

Copyright© Richard Lampitt.
National Oceanography Centre

We want to characterize the 
settling dynamics of porous particles.



Simulations of settling porous spheres

• Dense, highly porous 
particle settle in a 
stratification.

• Light fluid is entrained 
within the particle.

• Salt diffuses in, slowly.

• Particle velocity computed 
using a force balance.

• Use axisymmetric 
simulations, with penalty 
term in the porous region.



Non-Dimensional parameters and equations
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Parameters

l = lower

u = upper

s = solid

Φ = porosity
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Soap Bubble Coalescence Cascade
N RD OhD �D GD �D/�0 �D/�0

0 2cm 7.3⇥ 10�4 0.040 0 1 1
1 1cm 1.0⇥ 10�3 0.044 0.0033 1.0828 0.9967
2 5.2cm 1.5⇥ 10�3 0.047 0.0070 1.1748 0.9930
3 2.6cm 2.0⇥ 10�3 0.052 0.0112 1.2768 0.9889
4 1.3cm 2.9⇥ 10�3 0.057 0.0158 1.3896 0.9844
5 0.69cm 4.0⇥ 10�3 0.062 0.0210 1.5134 0.9795
6 0.35cm 5.6⇥ 10�3 0.068 0.0266 1.6479 0.9741
7 0.18cm 7.9⇥ 10�3 0.074 0.0327 1.7920 0.9683
8 91µcm 0.011 0.081 0.0392 1.9436 0.9623
9 45µcm 0.016 0.088 0.0460 2.0994 0.9560
10 22µcm 0.023 0.093 0.0507 2.2056 0.9518
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Here the dominant parameters are Pe and ξ.
• Pe captures the (inverse of) the diffusive effects

small Pe means diffusion is fast
large Pe means diffusion is slow

• ξ is an unusual ratio that measures how much the external density 
changes, relative to the excess density of the solid part of the particle.

small ξ means the external density can be treated as constant
large ξ means the external density dominates the dynamics



Sample simulations, two different ξ values

ξ = 1.5ξ =  0.5
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diffusion play only a minor role. As ⇠ increases, the delay due to diffusion within the sphere increases, as
does the delay due to diffusion within the entrained fluid, both growing approximately linearly. Within the
range of ⇠ considered, we find that the delay compared to the reference model grows linearly with ⇠, and is
well approximated by

tsim(⇠) ⇡ tref (⇠) + 185⇠. (23)

For naturally occurring values of the governing parameters, we therefore expect ⇠ and Pe to be the most
determinant factors in the total settling time of a porous particle.

Figure 16: Left: Time required to settle a distance of 100 radii across a density gradient for various particle’s ⇠ value. The reference
time tref was computed using equations (17), the model time, tmod using equations (19), and the simulation time, tsim using our full
numerical simulations. Right: Delay in settling time due to diffusion (tmod� tref ), entrainment (tsim� tmod), and both (tsim� tref ).

Finally, we present the effects of varying the Reynolds number on the non-dimensional settling time in
Figure 17. The Reynolds number influences several aspects of the flow. First, a larger Re corresponds to
smaller non-dimensional settling speed, and thus all three computed times increase with Re. The addi-
tional time due to diffusion within the sphere is found to be nearly independent of Re, as it does not affect
internal diffusive processes. Larger Reynolds numbers correspond to less entrained fluid, thus reducing
total diffusion time. Moreover, as Re increases, the flow within the porous sphere increases, and so does
transport of salt into the sphere. The overall settling delay thus shows a modest decrease with increasing
Re, though it remains nearly constant for the diffusion induced delay shown in purple color. We quantify
this effect as

tsim(Re) ⇡ tref (Re) +
356

1 + 0.026Re0.5
. (24)

18

Fitting formula for the delay:



Effect of ξ on settling delay
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Sample simulations, two different Pe
Pe = 1700Pe = 440

Higher Pe implies slower diffusion, longer retention



Effect of Pe on retention time

such as the delay approaching zero for Pe ! 0 and for ⇠ ! 0. Other functional forms may provide
acceptable fits as well, but the ones presented here were chosen as simple forms that closely matched our
data.

The computed reference, model, and simulations times are shown for various transition layer thicknesses
� in Figure 13a. We first note that the reference and model times are nearly independent of �. The delay
due to diffusion within the sphere, captured by tmod� tref shown in Figure 13b is therefore nearly constant,
as time required for salt to diffuse into the particle varies only weakly with �. However, the simulations
show that large transition layers contribute to slowing down the porous sphere, at least for �  32. Delays
due to diffusion in the entrained fluid are captured by tsim � tmod and labelled as ”due to entrainment”
in Figure 13b. These delays increase with � before leveling off. In a sharp density gradient, the entrained
fluid is more buoyant, and tends to detach from the porous particle, leaving less fluid through which salt
must diffuse, thus resulting in a shorter delay. For a sufficiently large value of �, the entrained fluid travels
with the porous particle, resulting in a longer delay. While for small � the delay due to diffusion within
the particle is similar to that due to entrainment, for larger � values, diffusion through entrained fluid is
dominant. As will be seen below, � only has a relatively small effect on the total settling time compared to
other parameters. We fitted the additional delay relative to the reference model as a function of �, as shown
with a dashed line in Figure 13b, and found

tsim(�) ⇡ tref (�) + 365

✓
1� 0.225

1 + 0.016�2

◆
(20)

Figure 14a shows the computed settling times as a function of Péclet number. The reference model assumes
Pe = 0 and so is unaffected by varying Pe. The time found using the model of equations (19) includes
diffusion through the particle only, and so finds a settling time that increases nearly linearly with Pe, since
the time required for diffusion to penetrate a radius a into the particle scales as t̃dif ⇠ a

2
/D. This is

consistent with results reported by [16] and non-dimensionalizes to tdif ⇠ Pe. The additional delay due
to diffusion through entrained fluid is more complicated, as can be seen in 14b, where it is seen to be non-
monotonic. For small Pe, the additional delay is relatively small, as diffusion through the entrained fluid
occurs quickly. As Pe increases, the delay increases until reaching a maximum near Pe = 1800. The delay
due to entrainment then decreases with Pe. By observing videos of the salt concentration [? ], one can
see the volume of entrained fluid decreasing with Pe. In a stratified ambient, the entrained fluid is always
buoyant. For sufficiently large Pe, diffusion is slow and so is the particle’s motion. The entrained fluid
then has time to detach from the porous particle, resulting in less effective entrainment. The volume of
fluid through which salt must diffuse then decreases, reducing the entrainment delay. The delay due to the
combined effects of diffusion and entrainment remains monotonically increasing with Péclet number, but
in a logarithmic manner. We fitted the additional delay relative to the reference model as a function of Pe
and found

tsim(Pe) ⇡ tref (Pe) + 120 log(1 +
Pe

100
) (21)
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Fitting formula:
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Larger Pe implies longer delays

Dependence on Pe is weaker than
anticipated because of entrainment

Settling position vs time
for various Pe.

We also quantified the effects of Re, Da, and transition thickness g.
Varying one parameter at a time only, we find:

This remains to be verified when several parameters varied simultaneously.

Soap Bubble Coalescence Cascade
N RD OhD �D GD �D/�0 �D/�0
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3 2.6cm 2.0⇥ 10�3 0.052 0.0112 1.2768 0.9889
4 1.3cm 2.9⇥ 10�3 0.057 0.0158 1.3896 0.9844
5 0.69cm 4.0⇥ 10�3 0.062 0.0210 1.5134 0.9795
6 0.35cm 5.6⇥ 10�3 0.068 0.0266 1.6479 0.9741
7 0.18cm 7.9⇥ 10�3 0.074 0.0327 1.7920 0.9683
8 91µcm 0.011 0.081 0.0392 1.9436 0.9623
9 45µcm 0.016 0.088 0.0460 2.0994 0.9560
10 22µcm 0.023 0.093 0.0507 2.2056 0.9518
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Ongoing work: irregular objects

• In reality, aggregates are far from
spheres

• For small objects, we can compute
flow around aggregated cubes

• We form aggregates as a collection
of randomly moving cubes.

• We solve for the flow using a 
boundary integral methods  

• One goal is to determine the 
equivalent sphere, to use
our previous results.

Fractal-shaped
aggregate

Flow past complex shape



Drag vs Mass relation

• A critical question is how fast do such
particles settle.

• We compute the drag as a function of 
size of the aggregate

• We find Drag ~  N0.46

• For a solid, we have Drag ~ N1/3

• The drag will also depend on the
exact aggregation mechanism,

Drag as a function of aggregate mass
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• We can now compute the
evolution of aggregates

• What are the stresses on them?
Do they break up?

• How are solutes diffusing in
and out of them?

• The goal is to describe the entire
formation process, more realistically 
than ever! 

Internal stresses during settling

Evolution of a solute

Flow direction

Aggregate dynamics



Conclusions

• Drops are subject to Marangoni effects, 
which can have a significant influence 
even when small

• Porous particles are influenced by  
diffusion of temperature/salt, which 
can result in lengthy stagnation.

Future/ongoing work:
• Incorporate stratification in aggregate simulations
• Use point-particles model that allow capture collective 

effects.

When settling:



Conclusions

• We quantified the dominant dependencies of marine snow retention time:
Linear in x,                                 ,   Logarithmic in Pe.

• We quantified the effects of Re, Da, and transition thickness g.
Varying one parameter at a time only, we find:

This remains to be verified when several parameters varied simultaneously.
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Next steps
• Develop a more realistic model by

tracking individual point-particles position, velocity, density.
tracking the flow field around them 

• Validate the model using detailed simulations
• Study fractal-like particles
• Use the model to characterize retention time more completely

Our results have appeared in PRF.
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Continuum governing equations 
Tf is a fluid temperature (defined everywhere)
Ts is a particle temperature (also defined everywhere)
All exchanges between solid and fluid are treated as sources/sinks.
Nu = Nusselt number =                total heat flux

unperturbed diffusive heat flux

Mean temperature (if ϕ << 1, Pes << 1, Rep << 1):

To simplify computations, it may be useful to define an average temperature T as:

T ⇥
(⇤cp)s⌅Ts + (⇤cp)f (1� ⌅)Tf

(⇤cp)s⌅ + (⇤cp)f (1� ⌅)
, (7)

In the limit ⌅ ⇧ 1, this reduces to T = (⇤Cp)s

(⇤Cp)f
⌅Ts + Tf . Taking a time derivative and

using equations (??)-(??), we find:

⇧T

⇧t
+ (⌃uf ·⌃)T = �f⌃2Tf �

(⇤Cp)s

(⇤Cp)f
⌅(Usk̂ ·⌃)Ts (8)

where (⇤Cp)s

(⇤Cp)f
⌅(Usk̂ · ⌃)Ts accounts for the influence of heat advection through particle

settling. Note that this equation is applicable to variable ⌅, provided the di�usion of

particles is negligible. For completeness, a term of the form Ts�⌅⌃2⌅, with �⌅ the di�usion

constant of particle concentration, could be added to the right hand-side of equation ??.

When ⌅ is not constant, it would be subject to its own advection-di�usion equation [?].

From equation (??) we find that the time required by the solid particle to equilibrate its

temperature with that of the fluid scales as teq ⇤ (⇤Cp)s

(⇤Cp)f
R2/(�fNu), where, for particles

such that Rep ⇤ O(1), the Nusselt number is of order one. Moreover, the time required

by the particle to settle a distance R scales as tset = R/Us. If teq ⇧ tset, the particle

temperature is always at equilibrium with that of the ambient fluid, and we can assume

Ts ⌅ Tf ⌅ T . So if teq/tset = ⇥s
⇥f

UsR
�s

= Pes ⇧ 1, where we introduced the particle Péclet

number Pes and assumed that the ratio of conductivities is of order one. We find that

equation (??) may be written in terms of T only as

⇧T

⇧t
+ (⌃uf ·⌃)T +

(⇤Cp)s

(⇤Cp)f
⌅(Usk̂ ·⌃)T = �f⌃2T (9)

⇧T

⇧t
+ ⌃uf ·⌃T + Pe k̂ ·⌃T = ⌃2T (10)
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as all the heat escaping from the solid phase is absorbed by the fluid phase. In the

fluid, the local heat source per volume is thus qf = Qf/Vf , where Vf is the fluid volume

associated to a single particle. Given a local particle volume fraction ⌃, we use the relation

⌃ = Vs/Vf to determine Vf . For a spherical particle, Vs = 4⌅R3/3, with R the particle

radius, and Vf = 4⌅R3/3⌃.

At the boundary between the fluid and a solid particle, the Nusselt number, Nu,

characterizes the ratio of total heat flux to conductive heat flux across the boundary:

Nu ⇥ hL

⇥f
=

Qf

As

R

⇥f (Ts � Tf )
(3)

where L is the characteristic length, h the convective heat transfer coe⇥cient, As the

surface area of the particle, and R its typical length scale. The Nusselt number around

a spherical particle is a known function of the particle Reynolds number, Rep = UsR/⇤,

with Us the particle settling speed and ⇤ the fluid viscosity [?].

Using equation (??) and Vf for a spherical particle, we find that

qf =
Qf

Vf
=

Nu ⇥f (Ts � Tf )4⌅R2

R

3⌃

4⌅R3
=

3Nu ⇥f (Ts � Tf )⌃
R2

, (4)

which, combined with equation (??), yields

⌥Tf

⌥t
+ (�uf ·⌅)Tf = �f⌅2Tf + ⌃

3�fNu

R2
(Ts � Tf ), (5)

Similarly in the solid phase, equations (??)-(??) and the relation Qs = �Qf yield

⌥Ts

⌥t
+ (�us ·⌅)Ts =

(⇧Cp)f

(⇧Cp)s

3�fNu

R2
(Tf � Ts), (6)

where �us is the local velocity of the solid phase, which in the limit Rep ⇤ 1, may be

written as �us = �uf + Usk̂. Note that the equation ?? does not include a di�usive term

because there is no direct heat transfer between solid particles, as particles are never in

direct contact with each other in a dilute suspension.
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Governing equations

r · ~u = 0 Continuity Equation

⇢
⇣@~u
@t

+ ~u ·r~u
⌘

= �r · (�P ¯̄I + µ(r~u+ (r~u)T )) + ~f Navier-Stokes

µ¯̄�1 · ~u = �rP + ~f Darcy

µ¯̄�1 · ~u = r · (�P ¯̄I + µe(r~u+ (r~u)T )) + ~f Brinkman

@c

@t
+ ~u ·rc = Dr2c Advection-Di↵usion

1

• Incompressible Navier-Stokes in the fluid domain

• Brinkman equation in the porous domain

• Advection-Diffusion for the soluble agent in the fluid

r · ~u = 0 Continuity Equation
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Soap Bubble Coalescence Cascade
N RD OhD �D GD �D/�0 �D/�0

0 2cm 7.3⇥ 10�4 0.040 0 1 1
1 1cm 1.0⇥ 10�3 0.044 0.0033 1.0828 0.9967
2 5.2cm 1.5⇥ 10�3 0.047 0.0070 1.1748 0.9930
3 2.6cm 2.0⇥ 10�3 0.052 0.0112 1.2768 0.9889
4 1.3cm 2.9⇥ 10�3 0.057 0.0158 1.3896 0.9844
5 0.69cm 4.0⇥ 10�3 0.062 0.0210 1.5134 0.9795
6 0.35cm 5.6⇥ 10�3 0.068 0.0266 1.6479 0.9741
7 0.18cm 7.9⇥ 10�3 0.074 0.0327 1.7920 0.9683
8 91µcm 0.011 0.081 0.0392 1.9436 0.9623
9 45µcm 0.016 0.088 0.0460 2.0994 0.9560
10 22µcm 0.023 0.093 0.0507 2.2056 0.9518
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Natural applications 

Sediments in the 
oceans             
ϕ ≈ 0.02 
κs / κf ≈ 1.5
Us ≈ 0.001 m/s
L   ≈ 100 m
αs ≈ 4 x 10-7 m2/s
Pe  ≈ 104

To simplify computations, it may be useful to define an average temperature T as:

T ⇥
(⇤cp)s⌅Ts + (⇤cp)f (1� ⌅)Tf

(⇤cp)s⌅ + (⇤cp)f (1� ⌅)
, (7)
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settling. Note that this equation is applicable to variable ⌅, provided the di�usion of

particles is negligible. For completeness, a term of the form Ts�⌅⌃2⌅, with �⌅ the di�usion

constant of particle concentration, could be added to the right hand-side of equation ??.

When ⌅ is not constant, it would be subject to its own advection-di�usion equation [?].
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Fly-ash in the           
atmosphere
ϕ ≈ 10-6 

κs / κf ≈ 30
Us ≈ 0.001 m/s
L   ≈ 1000 m
αs ≈ 10-7 m2/s

Pe  ≈ 102

Crystals in magma 
chambers
ϕ ≈ 0.1 

κs / κf ≈ O(1)
Us ≈ 5 x 10-7 m/s
L   ≈ 1000 m
αs ≈ 4 x 10-7 m2/s

Pe  ≈ 102

In all 3 systems, in the absence of convection, 
settling particles can be the dominant mode
of heat transport.



Tracking individual particles
We now track individual particles to allow:
• Inertial effects (history dependent settling speed)
• Temperature differences between particles and fluid 

We want to know:
• Do settling particles erode temperature gradients as they settle?
• Can larger particles heat a gradient from below?



Numerical Simulations

• Incompressible Navier-Stokes (NS) for all three fluids.

• Drop interface moves with the fluid.

• Advection-diffusion for the temperature.

• We non-dimensionalize using: r of the drop, 
Us the Hadamard-Rybczinskii settling speed
R the drop radius.

• Solve NS over the whole domain, supplemented of a forcing term on the interface

•We use an axisymmetric domain, with walls far enough away that they 
do not influence the dynamics.

Our numerical method is based on that of Popinet & Zaleski (1999)



How does Σcr depend on flow conditions? 
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• The dependence on transition thickness h is (still) weak if h ≤ 2

• The dependence on settling Reynolds number is nearly linear.
this confirms the direct competition between gravity and Marangoni effects



Effect of ξ on settling delay

diffusion play only a minor role. As ⇠ increases, the delay due to diffusion within the sphere increases, as
does the delay due to diffusion within the entrained fluid, both growing approximately linearly. Within the
range of ⇠ considered, we find that the delay compared to the reference model grows linearly with ⇠, and is
well approximated by

tsim(⇠) ⇡ tref (⇠) + 185⇠. (23)

For naturally occurring values of the governing parameters, we therefore expect ⇠ and Pe to be the most
determinant factors in the total settling time of a porous particle.

Figure 16: Left: Time required to settle a distance of 100 radii across a density gradient for various particle’s ⇠ value. The reference
time tref was computed using equations (17), the model time, tmod using equations (19), and the simulation time, tsim using our full
numerical simulations. Right: Delay in settling time due to diffusion (tmod� tref ), entrainment (tsim� tmod), and both (tsim� tref ).

Finally, we present the effects of varying the Reynolds number on the non-dimensional settling time in
Figure 17. The Reynolds number influences several aspects of the flow. First, a larger Re corresponds to
smaller non-dimensional settling speed, and thus all three computed times increase with Re. The addi-
tional time due to diffusion within the sphere is found to be nearly independent of Re, as it does not affect
internal diffusive processes. Larger Reynolds numbers correspond to less entrained fluid, thus reducing
total diffusion time. Moreover, as Re increases, the flow within the porous sphere increases, and so does
transport of salt into the sphere. The overall settling delay thus shows a modest decrease with increasing
Re, though it remains nearly constant for the diffusion induced delay shown in purple color. We quantify
this effect as

tsim(Re) ⇡ tref (Re) +
356

1 + 0.026Re0.5
. (24)
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Figure 16: Left: Time required to settle a distance of 100 radii across a density gradient for several values of ⇠ = ⇢l�⇢u
(⇢s�⇢u)(1��) .

The reference time tref (blue) was computed using equation (17), the enhanced model time tenh (red) using equation (19), and the
simulation time tsim (yellow) using our full numerical simulations. Right: Delay in settling time due to diffusion within the particle
(tenh � tref, purple), diffusion within the entrained fluid (tsim � tenh, orange), and both (tsim � tref, green). The fit of equation (23) is
shown as a dashed black line.

Finally, we present the effects of varying the Reynolds number on the non-dimensional settling time in
Figure 17. The Reynolds number influences several aspects of the flow. First, a larger Re corresponds to
smaller non-dimensional settling speed, and thus all three computed times increase with Re. The addi-
tional time due to diffusion within the sphere is found to be nearly independent of Re, as it does not affect
internal diffusive processes. Larger Reynolds numbers correspond to less entrained fluid, thus reducing
total diffusion time. Moreover, as Re increases, the flow within the porous sphere increases, and so does
transport of salt into the sphere. The overall settling delay thus shows a modest decrease with increasing
Re, though it remains nearly constant for the diffusion induced delay shown in purple. We quantify this
effect as

tsim(Re) ⇡ tref(Re) +
356

1 + 0.026Re0.5
. (24)

Figure 17: Left: Time required to settle a distance of 100 radii across a density gradient for several Reynolds numbers Re. The reference
time tref (blue) was computed using equation (17), the enhanced model time tenh (red) using equation (19), and the simulation time
tsim (yellow) using our full numerical simulations. Right: Delay in settling time due to diffusion within the particle (tenh�tref, purple),
diffusion within the entrained fluid (tsim � tenh, orange), and both (tsim � tref, green). The fit of equation (24) is shown as a dashed
black line.
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Quantifying retention
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Soap Bubble Coalescence Cascade
N RD OhD �D GD �D/�0 �D/�0

0 2cm 7.3⇥ 10�4 0.040 0 1 1
1 1cm 1.0⇥ 10�3 0.044 0.0033 1.0828 0.9967
2 5.2cm 1.5⇥ 10�3 0.047 0.0070 1.1748 0.9930
3 2.6cm 2.0⇥ 10�3 0.052 0.0112 1.2768 0.9889
4 1.3cm 2.9⇥ 10�3 0.057 0.0158 1.3896 0.9844
5 0.69cm 4.0⇥ 10�3 0.062 0.0210 1.5134 0.9795
6 0.35cm 5.6⇥ 10�3 0.068 0.0266 1.6479 0.9741
7 0.18cm 7.9⇥ 10�3 0.074 0.0327 1.7920 0.9683
8 91µcm 0.011 0.081 0.0392 1.9436 0.9623
9 45µcm 0.016 0.088 0.0460 2.0994 0.9560
10 22µcm 0.023 0.093 0.0507 2.2056 0.9518
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I + µ[r~u+ (r~u)T ]) + ~f
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Pe = 440

Da = 5⇥ 10�4

⇠ = 1.8

� = 11.6
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Effect of a single particle

A single particle
triggers oscillations
of frequency  

The frequency is independent of size.

The amplitude increases with size.

time

Temperature profile

Isopycnal over time after a
particle settles through



Summary
• Drops settling in a sharp stratification are dramatically slowed by lighter fluid 
entrained into denser fluid.

•This phenomena is remarkably robust to variations in transition thickness.

•A lower layer with smaller surface tension significantly accelerates  
a settling drop. 

•A lower layer of larger surface tension can stop settling drops.

•We can find a critical surface tension variation for hovering. 

• Σcr varies linearly with drop Reynolds number

• Drops eventually fall through once the transition ceases to be sharp. 

• Small variations in surface tension matter.



Mathematical models

fdrag

fg

fbuoyancy
1) Reference model
Assumes:  - Empirical drag, based on Reynolds number

- Constant excess density of the particle
- No perturbations to the initial density profile
- Instantaneous diffusion: inner fluid density always matches           
outer fluid density

2) Enhanced model 
Assumes:  - Empirical drag, based on Reynolds number

- No perturbations to the initial density profile
- Inner fluid density changes as salt diffuses in from initial profile

Enhanced Model from: 
R. Camassa , S. Khatri , R. M. McLaughlin , J. C. Prairie , B. L. White, Phys. Fluids 25, 081701 
(2013)

Only simulations account for the entrained fluid, which affects
Buoyancy 
Diffusion time 


