Subtraction Techniques for the close evaluation of layer potentials

Camille Carvalho

Introduction: 2D close evaluation problem

Introduction: 2D close evaluation problem

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Goal: accurately evaluate the near field, that is the solution of the scattering problem near the boundary.

Introduction: 2D close evaluation problem

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Goal: accurately evaluate the near field, that is the solution of the scattering problem near the boundary.

Why ? Problems in Stokes flow and plasmonic problems require accurate evaluation near the boundary.

Introduction: 2D close evaluation problem

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Goal: accurately evaluate the near field, that is the solution of the scattering problem near the boundary.

Why ? Problems in Stokes flow and plasmonic problems require accurate evaluation near the boundary.

JFL Lab.

Introduction: 2D close evaluation problem

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Goal: accurately evaluate the near field, that is the solution of the scattering problem near the boundary.

Why ? Problems in Stokes flow and plasmonic problems require accurate evaluation near the boundary.

JFL Lab.

Garoli et al., (2015)

Introduction: 2D close evaluation problem

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Goal: accurately evaluate the near field, that is the solution of the scattering problem near the boundary.

Why ? Problems in Stokes flow and plasmonic problems require accurate evaluation near the boundary.

JFL Lab.

Garoli et al., (2015)
How? Using boundary integral methods.

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D
$$

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D
$$

$$
G \text { : fundamental solution } \quad G(x, y)=\frac{i}{4} \mathrm{H}_{0}^{(1)}(k(|x-y|))
$$

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

$$
\begin{gathered}
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D \\
G \text { : fundamental solution } \quad G(x, y)=\frac{i}{4} \mathrm{H}_{0}^{(1)}(k(|x-y|)) \\
\mu \text { : solution of the BIE } \\
\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D}\left[\partial_{n_{y}} G\left(y^{\prime}, y\right)-i k G\left(y^{\prime}, y\right)\right] \mu(y) d y=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
\end{gathered}
$$

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

$$
\begin{gathered}
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D \\
G \text { : fundamental solution } \quad G(x, y)=\frac{i}{4} \mathrm{H}_{0}^{(1)}(k(|x-y|)) \\
\mu \text { : solution of the BIE } \\
\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D}\left[\partial_{n_{y}} G\left(y^{\prime}, y\right)-i k G\left(y^{\prime}, y\right)\right] \mu(y) d y=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
\end{gathered}
$$

\checkmark reduces the problem by one dimension

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

$$
\begin{gathered}
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D \\
G \text { : fundamental solution } \quad G(x, y)=\frac{i}{4} \mathrm{H}_{0}^{(1)}(k(|x-y|)) \\
\mu \text { : solution of the BIE } \\
\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D}\left[\partial_{n_{y}} G\left(y^{\prime}, y\right)-i k G\left(y^{\prime}, y\right)\right] \mu(y) d y=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
\end{gathered}
$$

\checkmark reduces the problem by one dimension
\checkmark high order methods

Boundary integral methods

$$
\begin{aligned}
& \Delta u+k^{2} u=0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}, \\
& u=f \quad \text { on } \partial D, \\
& \partial_{r} u-\mathrm{i} k u=o\left(r^{-1 / 2}\right), \quad r \rightarrow \infty,
\end{aligned}
$$

Boundary integral methods represents the solution via layer potentials:

$$
\begin{gathered}
\begin{array}{|c|}
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D \\
G: \text { fundamental solution } \quad G(x, y)=\frac{i}{4} \mathrm{H}_{0}^{(1)}(k(|x-y|)) \\
\mu: \text { solution of the BIE } \\
\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D}\left[\partial_{n_{y}} G\left(y^{\prime}, y\right)-i k G\left(y^{\prime}, y\right)\right] \mu(y) d y=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
\end{array}
\end{gathered}
$$

Kress (1991).
\checkmark reduces the problem by one dimension
\checkmark high order methods

Boundary integral methods

Boundary integral methods

Numerically

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.
Problem: the kernel is sharply peaked when x approaches the boundary.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.
Problem: the kernel is sharply peaked when x approaches the boundary.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.
Problem: the kernel is sharply peaked when x approaches the boundary.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.
Problem: the kernel is sharply peaked when x approaches the boundary.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.
Problem: the kernel is sharply peaked when x approaches the boundary.

Boundary integral methods

Numerically
Use a quadrature rule (Nyström method) to evaluate the BIE.
Problem: the kernel is sharply peaked when x approaches the boundary.

Nearly singular integral

Boundary integral methods

$\left.u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)-i k G(x, y)\right) \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D$
Use the same quadrature rule

$$
\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D}\left[\partial_{n_{y}} G\left(y^{\prime}, y\right)-i k G\left(y^{\prime}, y\right)\right] \mu(y) d y=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
$$

Use a quadrature rule (Nyström method) to evaluate the BIE.

Numerically
Problem: the kernel is sharply peaked when x approaches the boundary.

Nearly singular integral

Boundary integral methods

$u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)-i k G(x, y) \quad \mu(y) d y, \quad \forall x \in \mathbb{R}^{2} \backslash D$
Use the same quadrature rule

$$
\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D}\left[\partial_{n_{y}} G\left(y^{\prime}, y\right)-i k G\left(y^{\prime}, y\right)\right] \mu(y) d y=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
$$

Use a quadrature rule (Nyström method) to evaluate the BIE.

Numerically
Problem: the kernel is sharply peaked when x approaches the boundary.

Nearly singular integral

For a fixed number of quadrature points, $\mathrm{O}(1)$ error.

How to address this error?

How to address this error?

1) increase the number of quadrature points

How to address this error?

1) increase the number of quadrature points \boldsymbol{X} bigger linear system to solve

How to address this error?

1) increase the number of quadrature points \boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

How to address this error?

1) increase the number of quadrature points \boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).
Can we provide a simple method without 1), 2) (or 3)) ?

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).
Can we provide a simple method without 1), 2) (or 3)) ?
Today's idea: subtraction techniques

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).
Can we provide a simple method without 1), 2) (or 3)) ?
Today's idea: subtraction techniques
$u(x)=\int_{\partial D} K(x, y) \mu(y) d \sigma_{y}$

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).
Can we provide a simple method without 1), 2) (or 3)) ?
Today's idea: subtraction techniques

$$
u(x)=\int_{\partial D} K(x, y) \mu(y) d \sigma_{y}=\int_{\partial D} K(x, y)[\mu(y)-\alpha(x, y)] d \sigma_{y}+\int_{\partial D} K(x, y) \alpha(x, y) d \sigma_{y}
$$

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).
Can we provide a simple method without 1), 2) (or 3)) ?
Today's idea: subtraction techniques

$$
u(x)=\int_{\partial D} K(x, y) \mu(y) d \sigma_{y}=\int_{\partial D} K(x, y)[\mu(y)-\alpha(x, y)] d \sigma_{y}+\int_{\partial D} K(x, y) \alpha(x, y) d \sigma_{y}
$$

Vanishes at $x=y$

How to address this error?

1) increase the number of quadrature points
\boldsymbol{X} bigger linear system to solve
2) use high-order Nyström methods

X requires sophisticated accelerated schemes
3) other techniques that achieve accurate precision: regularization, interpolation, QBX ...

Beale et al. (2001), Helsing et al. (2008), Barnett (2014).
Can we provide a simple method without 1), 2) (or 3)) ?
Today's idea: subtraction techniques

$$
u(x)=\int_{\partial D} K(x, y) \mu(y) d \sigma_{y}=\int_{\partial D} K(x, y)[\mu(y)-\alpha(x, y)] d \sigma_{y}+\int_{\partial D} K(x, y) \alpha(x, y) d \sigma_{y}
$$

Outline

* Introduction
* Subtraction techniques for Laplace's equation
* Extension to Helmholtz
- Conclusion

Subtraction technique for Laplace (I)

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

G : fundamental solution $\quad G(x, y)=-\frac{1}{2 \pi} \log |x-y|$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
\begin{gathered}
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y} \\
G: \text { fundamental solution } \quad G(x, y)=- \\
\mu: \text { solution of the BIE } \\
-\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D} \partial_{n_{y}} G\left(y^{\prime}, y\right) \mu(y) d \sigma_{y}=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D
\end{gathered}
$$

$$
G(x, y)=-\frac{1}{2 \pi} \log |x-y|
$$

$$
\Delta u=0 \quad D
$$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

G : fundamental solution $\quad G(x, y)=-\frac{1}{2 \pi} \log |x-y|$

μ : solution of the BIE
$-\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D} \partial_{n_{y}} G\left(y^{\prime}, y\right) \mu(y) d \sigma_{y}=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D$
Using Gauss's law: $\int_{\partial D} \partial_{n_{y}} G(x, y) d \sigma_{y}=\left\{\begin{array}{rl}0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\ -\frac{1}{2} & x \in \partial D \\ -1 & x \in D\end{array}\right.$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

G : fundamental solution $\quad G(x, y)=-\frac{1}{2 \pi} \log |x-y|$
 μ : solution of the BIE
$-\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D} \partial_{n_{y}} G\left(y^{\prime}, y\right) \mu(y) d \sigma_{y}=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D$
Using Gauss's law: $\int_{\partial D} \partial_{n_{y}} G(x, y) d \sigma_{y}=\left\{\begin{array}{rl}0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\ -\frac{1}{2} & x \in \partial D \\ -1 & x \in D\end{array}\right.$

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}+\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(x) d \sigma_{y}
$$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

G : fundamental solution $\quad G(x, y)=-\frac{1}{2 \pi} \log |x-y|$
 μ : solution of the BIE
$-\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D} \partial_{n_{y}} G\left(y^{\prime}, y\right) \mu(y) d \sigma_{y}=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D$
Using Gauss's law: $\int_{\partial D} \partial_{n_{y}} G(x, y) d \sigma_{y}=\left\{\begin{array}{rl}0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\ -\frac{1}{2} & x \in \partial D \\ -1 & x \in D\end{array}\right.$

$$
\begin{aligned}
u(x) & =\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}+\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(x) d \sigma_{y} \\
& =\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}-\mu(x)
\end{aligned}
$$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

G : fundamental solution $\quad G(x, y)=-\frac{1}{2 \pi} \log |x-y|$
 μ : solution of the BIE
$-\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D} \partial_{n_{y}} G\left(y^{\prime}, y\right) \mu(y) d \sigma_{y}=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D$
Using Gauss's law: $\int_{\partial D} \partial_{n_{y}} G(x, y) d \sigma_{y}=\left\{\begin{array}{rl}0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\ -\frac{1}{2} & x \in \partial D \\ -1 & x \in D\end{array}\right.$

$$
\begin{gathered}
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}+\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(x) d \sigma_{y} \\
=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}-\mu(x) \\
\quad \text { Vanishes at } x=y
\end{gathered}
$$

Subtraction technique for Laplace (I)

The solution of the interior Dirichlet Laplace problem can be represented as

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

G : fundamental solution $\quad G(x, y)=-\frac{1}{2 \pi} \log |x-y|$
 μ : solution of the BIE
$-\frac{1}{2} \mu\left(y^{\prime}\right)+\int_{\partial D} \partial_{n_{y}} G\left(y^{\prime}, y\right) \mu(y) d \sigma_{y}=f\left(y^{\prime}\right), \quad \forall y^{\prime} \in \partial D$
Using Gauss's law: $\int_{\partial D} \partial_{n_{y}} G(x, y) d \sigma_{y}=\left\{\begin{array}{rl}0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\ -\frac{1}{2} & x \in \partial D \\ -1 & x \in D\end{array}\right.$

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}+\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(x) d \sigma_{y}
$$

$$
=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}-\mu(x)
$$

Vanishes at $x=y \quad$ Depends only on μ resolution

Subtraction technique for Laplace (II)

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=128$ for $u(x)=\log \left|x-x_{0}\right|$

Method 1: PTR

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

Method 2: PTR + density subtraction

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}-\mu(x)
$$

Subtraction technique for Laplace (II)

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=128$ for $u(x)=\log \left|x-x_{0}\right|$

Method 1: PTR

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

Error Method 1

Method 2: PTR + density subtraction

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}-\mu(x)
$$

Subtraction technique for Laplace (II)

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=128$ for $u(x)=\log \left|x-x_{0}\right|$

Method 1: PTR

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y) \mu(y) d \sigma_{y}
$$

Method 2: PTR + density subtraction

$$
u(x)=\int_{\partial D} \partial_{n_{y}} G(x, y)[\mu(y)-\mu(x)] d \sigma_{y}-\mu(x)
$$

Extensions to Helmholtz

Extensions to Helmholtz

Can we do the same trick for scattering problems ?

Extensions to Helmholtz

Can we do the same trick for scattering problems ?

$$
\int_{\partial D} \partial_{n_{y}} G(x, y) d \sigma_{y}=\left\{\begin{array}{rl}
0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\
-\frac{1}{2} & x \in \partial D \\
-1 & x \in D
\end{array} \quad \text { with } G(x, y):=\frac{i}{4} H_{0}^{(1)}(k|x-y|)\right.
$$

Extensions to Helmholtz

Can we do the same trick for scattering problems ?

Extensions to Helmholtz

Can we do the same trick for scattering problems?

The key is work with solutions of Helmholtz: plane waves $u_{d}(x)=e^{i k(d \cdot x)}$

Extensions to Helmholtz

Can we do the same trick for scattering problems ?

The key is work with solutions of Helmholtz: plane waves $u_{d}(x)=e^{i k(d \cdot x)}$

One can show that

$$
\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot d\right) G(x, y)\right] e^{i k(d \cdot y)} d \sigma_{y}= \begin{cases}0 & x \in \mathbb{R}^{2} \backslash \bar{D} \\ -\frac{1}{2} e^{i k(d \cdot x)} & x \in \partial D \\ -e^{i k(d \cdot x)} & x \in D\end{cases}
$$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$
 $u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] \mu(y) d \sigma_{y}-i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$
 $u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] \mu(y) d \sigma_{y}-i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}$

Vanishes at $x=y$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$
$u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] \mu(y) d \sigma_{y}-i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}$

$$
\begin{aligned}
& \int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right]\left[\mu(y)-\mu(x) e^{i k n_{x} \cdot(y-x)}\right] d \sigma_{y} \\
& +\mu(x) e^{i k n_{x} \cdot x} \int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] e^{i k n_{x} \cdot(y)} d \sigma_{y}
\end{aligned}
$$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$

$$
\left.u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] \mu(y) d \sigma_{y}-i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}\right)
$$

$\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right]\left[\mu(y)-\mu(x) e^{i k n_{x} \cdot(y-x)}\right] d \sigma_{y} \longleftarrow$ Vanishes at $x=y$
$+\mu(x) e^{i k n_{x} \cdot x} \int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] e^{i k n_{x} \cdot(y)} d \sigma_{y}$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] \mu(y) d \sigma_{y}-i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}
$$

$\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right]\left[\mu(y)-\mu(x) e^{i k n_{x} \cdot(y-x)}\right] d \sigma_{y} \longleftarrow$ Vanishes at $x=y$

Extensions to Helmholtz

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k G(x, y)\right] \mu(y) d \sigma_{y}
$$

Use the plane wave with incidence $n_{x}: u_{x}(y)=e^{i k\left(n_{x} \cdot y\right)}$

$$
u(x)=\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] \mu(y) d \sigma_{y}-i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}
$$

$\int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right]\left[\mu(y)-\mu(x) e^{i k n_{x} \cdot(y-x)}\right] d \sigma_{y} \longleftarrow \vee$ Vanishes at $x=y$ $+\mu(x) e^{i k n_{x} \cdot x} \int_{\partial D}\left[\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right] e^{i k n_{x} \cdot(y)} d \sigma_{y} \longleftarrow \quad$ Using new identity

$$
\begin{aligned}
u(x)=\int_{\partial D}[& \left.\partial_{n_{y}} G(x, y)-i k\left(n_{y} \cdot n_{x}\right) G(x, y)\right]\left[\mu(y)-\mu(x) e^{i k n_{x} \cdot(y-x)}\right] d \sigma_{y} \\
& -i \int_{\partial D}\left[k-k\left(n_{y} \cdot n_{x}\right)\right] G(x, y) \mu(y) d \sigma_{y}
\end{aligned}
$$

Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=256$ for $u(x):=\frac{i}{4} H_{0}^{(1)}\left(k\left|x-x_{0}\right|\right) \quad k=15$
Method 1: PTR

Method 2: PTR + PW subtraction

Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=256$ for $u(x):=\frac{i}{4} H_{0}^{(1)}\left(k\left|x-x_{0}\right|\right) \quad k=15$
Method 1: PTR

Method 2: PTR + PW subtraction

Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=256$ for $u(x):=\frac{i}{4} H_{0}^{(1)}\left(k\left|x-x_{0}\right|\right) \quad k=15$

Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with $\mathrm{N}=128$ for $u(x):=\frac{i}{4} H_{0}^{(1)}\left(k\left|x-x_{0}\right|\right) \quad k=5$

Outline

* Introduction
* Subtraction techniques for Laplace's equation
* Extension to Helmholtz
- Conclusion

Summary

Due to sharply peaked behavior of layer potentials' kernel, one makes an $O(1)$ error for close evaluation.

Subtraction techniques help reduce the error (for free)
2D Helmholtz and Laplace problems

Summary

Due to sharply peaked behavior of layer potentials' kernel, one makes an $O(1)$ error for close evaluation.

Subtraction techniques help reduce the error (for free)
2D Helmholtz and Laplace problems

Other techniques:
Kernel/singularity subtraction techniques Asymptotic approximations

Perez-Arancibia (2018)
Carvalho, Khatri, Kim (2020)

Summary

Due to sharply peaked behavior of layer potentials' kernel, one makes an $O(1)$ error for close evaluation.

Subtraction techniques help reduce the error (for free)
2D Helmholtz and Laplace problems

Other techniques:
Kernel/singularity subtraction techniques Asymptotic approximations

Carvalho, Khatri, Kim (2020)

Perspectives:

Stokes flow (3D)
Scattering problem in plasmonics (transmission problem)

Thank you for your attention.

THIS IS WHAT LEARNING LOGIC GATES FEELS LIKE

smbc.com

