The Limit Cycle of a Contact Line

Nathan C. Keim Cal Poly San Luis Obispo

Undergraduates: Dani Medina Aidan McGuckin Audrey Profeta Brian Kroger Jenny Smit Esmeralda Orozco Juan Ortiz Salazar

CSU RSCA Grant; CSU LSAMP; Bill & Linda Frost Fund

Stroboscopic Imaging

Pictures taken at the red circles

One frame per cycle

Cyclic driving is ubiquitous

- Can change systems that don't relax
- Can form memories
- Can reveal new behaviors & prompt new questions

Use amorphous solids to develop these ideas

Keim & Nagel PRL 2011 Keim & Arratia PRL 2014 Keim *et al.* in preparation

2D Amorphous Solid

Polystyrene microspheres 3.8, 5.8 µm

Aveyard, Clint, Nees, & Paunov. Langmuir (2000) Masschaele et al., Phys. Rev. Lett. (2010)

Long-range repulsion
→ Mechanically over-constrained (jammed)
Particles not touching
Negligible thermal motion

Keim & Arratia, Soft Matter 2013

Shear at 0.05 Hz Strain amplitude 0.055

Find rearrangements

Falk & Langer Ann Rev CMP 2011, Keim & Arratia, PRL 2014; Soft Matter 2015

Find rearrangements

github.com/nkeim/philatracks Falk & Langer Ann Rev CMP 2011, Keim & Arratia, PRL 2014; Soft Matter 2015

Self-Organization in Jammed Solid

Keim & Arratia, Soft Matter (2015)

Self-Organization in Jammed Solid

Keim & Arratia, Soft Matter (2015)

Steady State = repeating rearrangements

Steady State = repeating rearrangements

Steady State = repeating rearrangements

Reading out a memory

Kinetics of rearrangements consistent with return-point memory

Arises from hysteretic subsystems + cooperative interactions

Large strain amplitude → Too many subsystems + interactions → Depinning → No periodic steady state

Are these ideas relevant to contact line?

Keim *et al.*, in preparation Regev *et al.* Nat Comms (2015)

Stroboscopic Imaging

Pictures taken at the red circles

Approach to steady state

Transition from Periodic to Fluctuating

Transition from Periodic to Fluctuating

Binary difference images show transition

Disordered landscape of pinning & wetting

Maximal extent at each amplitude 1 µL increments

1 mm

Contact line is rich in hysteresis

Cooperative interactions

de Gennes, Rev. Mod. Phys. (1985)

Below critical amplitude,

- I. **Pinning:** Below critical amplitude, discrete jumps mean system is trapped in finite set of states
- 2. **Self-organized limit cycle:** Each piece of the contact line stops changing when its motion becomes periodic.

Coppersmith, Phys. Rev. A (1987) Regev et al., Nat. Comms. (2015) Keim & Arratia, PRL (2014) Below critical amplitude,

- I. **Pinning:** Below critical amplitude, discrete jumps mean system is trapped in finite set of states
- 2. Self-organized limit cycle: Each piece of the contact line stops changing when its motion becomes periodic.

Above critical amplitude,

- Jumps encourage more jumps, depinning large regions
- System "flows" among many more states
 - \rightarrow Never periodic.

Coppersmith, Phys. Rev. A (1987) Regev et al., Nat. Comms. (2015) Keim & Arratia, PRL (2014)

Memory?

Conclusions

- Contact line motion has self-organized limit cycles, memory
 - "Depinning physics" at its most literal.
- Could comparison w/ other systems tell us about microscopic physics?

Thanks: Tom Bensky, Andrew Cantino, Sid Nagel, Joey Paulsen, Kevin Thompson Supported by NSF DMR-1708870 and PHY-1748958, the Bill and Linda Frost Fund, CSU LSAMP, and CSU RSCA.