Suction feeding in the carnivorous plant bladderwort (*Utricularia*)

lessons from

the smallest and fastest suction feeders

Ulrike Müller California State University Fresno

Bladderwort (Utricularia inflata)

© Makoto Honda

Bladderwort traps

*Vincent et al, Proc. Roy. Soc. B (2011); *Poppinga et al., AoB Plants (2016); © Vicent (left), Wikipedia (right)

> 200 species | trap sizes: 0.5 to 8 mm

Poppinga et al., AoB Plants (2016)

sucking while small – does size limit performance?

Fish larva gape ~200 μm peak flow near mouth 1 mm/s

Bladderwort gape ~200 μm peak flow near mouth 1 m/s

China & Holzman, PNAS (2014)

Question

Small suction feeders: what's the fluid mechanics?

How do small suction feeders overcome the relatively large viscous forces?

Hypothesis

Bladderwort operate within inviscid (inertial) flow,

which lowers the relative contribution of friction and increases flow speed.

Predictions

from fluid dynamic models 1. inviscid flow model

2. viscous flow model

Analytical model of **inviscid** vs **viscous** flow outside the trap*

- x : axial coordinate
- $x_{\rm m}$: axial position of mouth plane
- u_m : fluid velocity at mouth plane
- *d* : gape diameter

 $u_{d/2}$: fluid velocity at $\frac{1}{2}$ gape

*Sampson, Proc R Soc London A 1891; * Muller et al., J Theor Biol 1982

flow visualization | experimental setup

recording at up to 50 000 frames/s

*Sampson, Proc R Soc London A 1891; [‡]Muller et al., J Theor Biol 1982

Conclusion

bladderwort trap

flow is inviscid

can generate fast flows despite their small size

Question 2

How do bladderwort traps keep the flow inviscid?

What do bladderwort differently from larval fish?

Hypotheses

Bladderwort operate within H1: undeveloped flow or H0: developed inertial flow,

which lowers the relative contribution of friction and increases flow speed.

What enables bladderwort to generate effectively inviscid suction flows?

1 inertial flow \rightarrow large pressure: >10 kPa

2 start-up effect \rightarrow brief event: < 1 ms

3 entrance effect \rightarrow short channel: <200 μ m

start-up effect:

- lowers ΔP inside the mouth `funnel'
- does **not** change performance in front of mouth

- 1:1 L:D funnel has monotonically increasing flow
- a shorter funnel speeds up the onset, has transient peak

- 1:1 L:D funnel shows monotonically increasing flow with plateau after 0.15 ms
- a shorter funnel speeds up the onset of fast flow
- experimental data (•) suggest that funnel is functionally very short

How to avoid viscous effects? 1 high pressure 2 start-up 3 entrance effect

fast flow: fast onset:

Conclusion 2 bladderwort traps generate inviscid flow by HO: generating high pressure H1: sucking thru a very short throat H1: a fast onset of flow (start-up effect)

Thank you | collaborators | funding

DRIM

EAT, TOGAT

Gen Li (Chiba University) Janneke Schwaner (University of Idaho) Johan van Leeuwen & Kees Voesenek (Wageningen University) Roi Holzman (Tel Aviv University) Otto Berg (Fresno State University)

NSF BIO-IOS # 1352130