Solving PDE related problems using deep-learning

Adar Kahana Tel Aviv University

Under the supervision of Eli Turkel (TAU) and Dan Givoli (Technion) Shai Dekel (TAU)

Waves seminar, UC Merced

February 4th , 2021

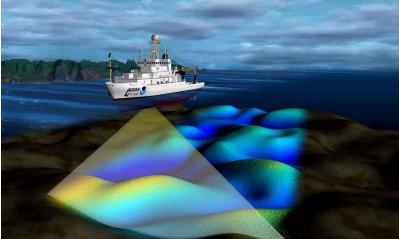
Agenda

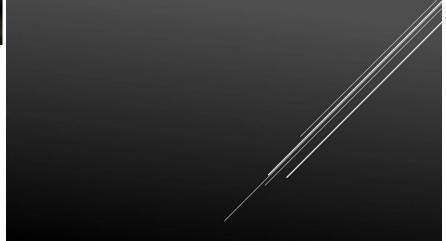
Motivation

- Data driven problems
- Obstacle identification and deep-learning
- Dealing with CFL instability using deep-learning

Underwater acoustics

• Sonar imaging





The wave problem

$$\begin{aligned} \ddot{u}(\vec{x},t) &= div(c(\vec{x})^2 \nabla u(\vec{x},t)), & \vec{x} \in \Omega, t \in (0,T] \\ u(\vec{x},0) &= u_0(\vec{x}), & \vec{x} \in \Omega \\ \dot{u}(\vec{x},0) &= u_0(\vec{x}), & \vec{x} \in \Omega \\ u(\vec{x},t) &= f(\vec{x},t), & \vec{x} \in \partial\Omega_1, t \in [0,T] \\ \nabla u(\vec{x},t) &= g(\vec{x},t), & \vec{x} \in \partial\Omega_2, t \in [0,T] \end{aligned}$$

where $\dot{u}_0(\vec{x}) = 0$ and $f(\vec{x}, t) = g(\vec{x}, t) = 0$

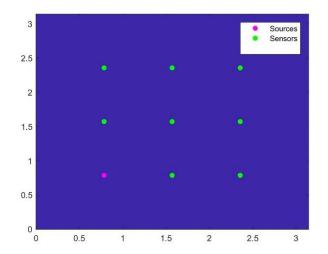
Ill-posed problems

- In an experiment, we store the pressure at a small number of sensors for all time steps
- We wish to find the properties of the source or obstacle from the data stored at these sensors where the **number of sensors << mesh**
- This is an inverse problem which is highly ill-posed
- Hence, one cannot usually reconstruct the initial conditions perfectly
- Can we solve these types of ill-posed problems with learning?

Partial information

- "Recording" the solution at a small set of sensors placed in the domain $\{\vec{x}_{s_n}\}_{n=1}^K \in \Omega$
- Data –

$$\begin{pmatrix} u(\vec{x}_{s_1}, t) \\ u(\vec{x}_{s_2}, t) \\ \vdots \\ u(\vec{x}_{s_n}, t) \end{pmatrix} + \mathcal{N}(\mu, \sigma^2)$$



• The ill-posedness raises sensitivity to noise at the sensors

Agenda

\circ Motivation \checkmark

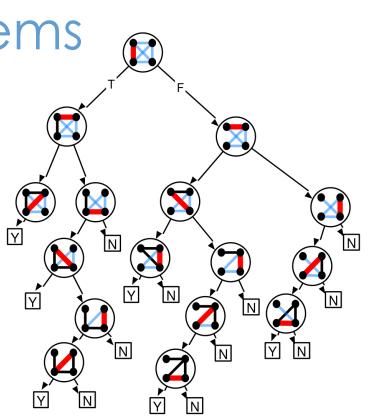
• Data driven problems

- Obstacle identification and deep-learning
- Dealing with CFL instability using deep-learning

Data driven problems

Supervised learning
Input data
Output labels
Training
Prediction (testing)

• Drawback - sensitivity

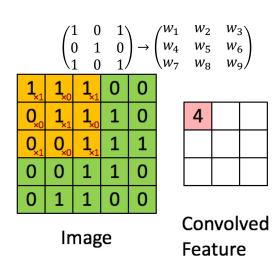


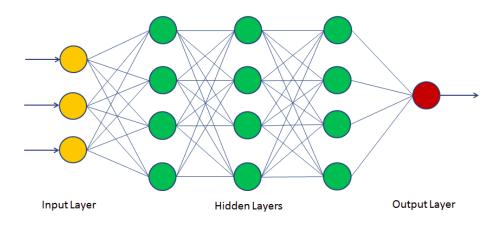
Deep-learning

• Training "weights" to learn connections in the data

- Hidden multi-dimensional embeddings
- Convolutions, Fully connected
- "Deep" and non-linear

• Loss





Physically-informed NN

- Input: set of points from the initial and boundary conditions
- Output: solution in the domain

• Loss: the problem

$$ih_t + 0.5h_{xx} + |h|^2 h = 0, x \in [-5, 5], t \in [0, \pi/2],$$

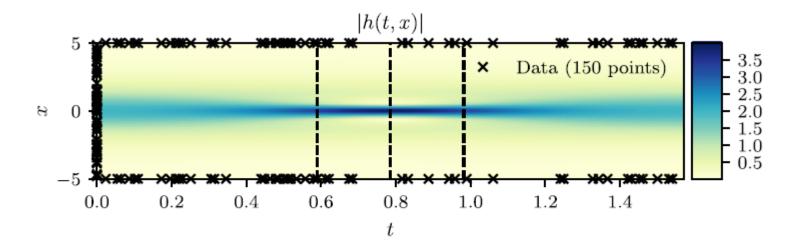
 $h(0, x) = 2 \operatorname{sech}(x),$
 $h(t, -5) = h(t, 5),$
 $h_x(t, -5) = h_x(t, 5),$

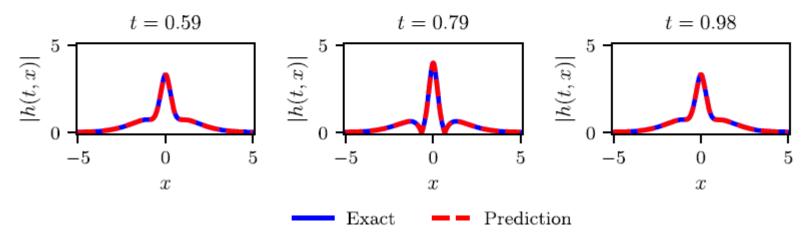
$$f := ih_t + 0.5h_{xx} + |h|^2 h_t$$

$$\begin{split} MSE &= MSE_0 + MSE_b + MSE_f, \\ MSE_0 &= \frac{1}{N_0} \sum_{i=1}^{N_0} |h(0, x_0^i) - h_0^i|^2, \\ MSE_b &= \frac{1}{N_b} \sum_{i=1}^{N_b} \left(|h^i(t_b^i, -5) - h^i(t_b^i, 5)|^2 + |h_x^i(t_b^i, -5) - h_x^i(t_b^i, 5)|^2 \right), \\ MSE_f &= \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2. \end{split}$$

M. Raissi, P. Perdikaris, G.E. Karniadakis, Journal of computational Physics, 2018

Results





Agenda

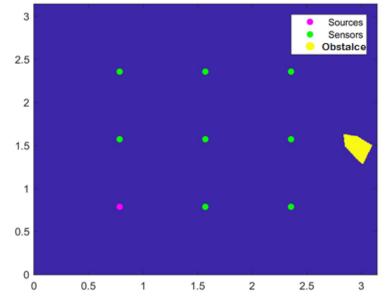
\circ Motivation \checkmark

Data driven problems

- Obstacle identification and deep-learning
- Dealing with CFL instability using deep-learning

Problem definition

Given the position of the source/s and data at a few sensors but many time slices find the location, size and shape of the unknown scatterers

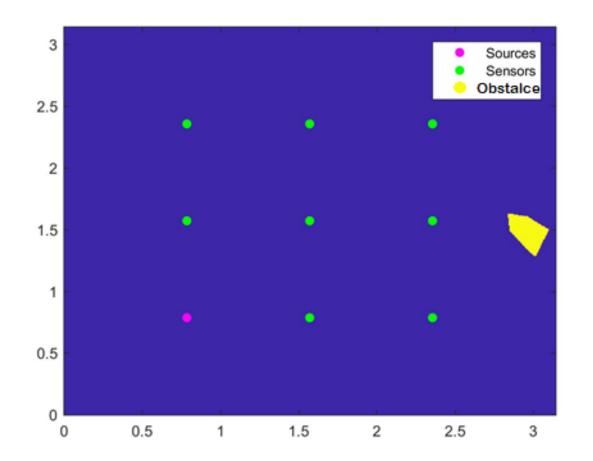


Input: Sensors recordings ($N_{samples} \times N_{tsteps} \times N_{sensors}$) Output: Obstacle?

Prior work

- Location \vec{x}
- Shape and size
 - Circles: Radius
 - Rectangles: Height and Width
 - Complex shapes: need to be parametrized
- "Soft" obstacles
 - Semi-penetrable
 - Multiphysics

Labels solution - segments

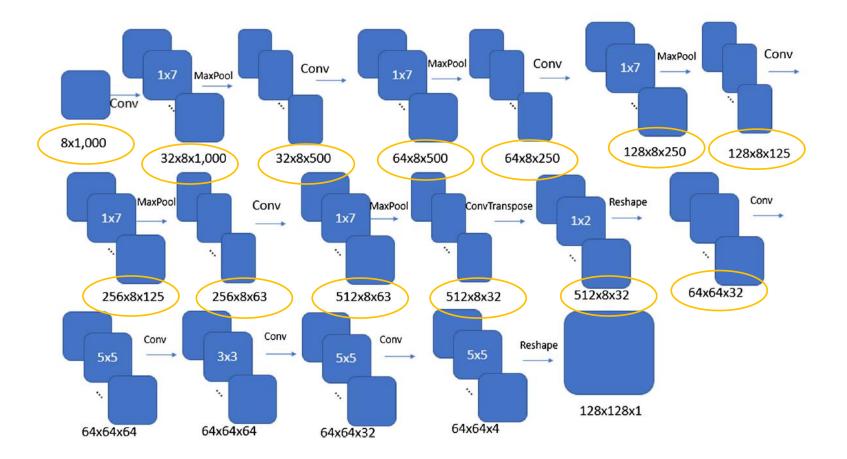


Labels are $m \times n$ **binary** matrices

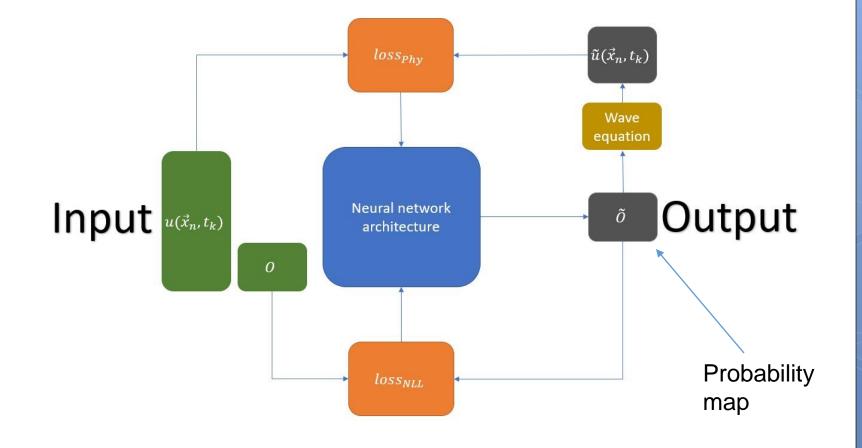
Predictions will be $m \times n$ probability matrices

Loss: NLL

Spatio-temporal architecture



Loss diagram



Physically informed loss

Using the segmentation network and output Õ
Define a loss component based on:

• Solve:
$$u_{tt} = \left(\left(1 - \tilde{O}(x) \right) c^2(x) \right) \Delta u$$

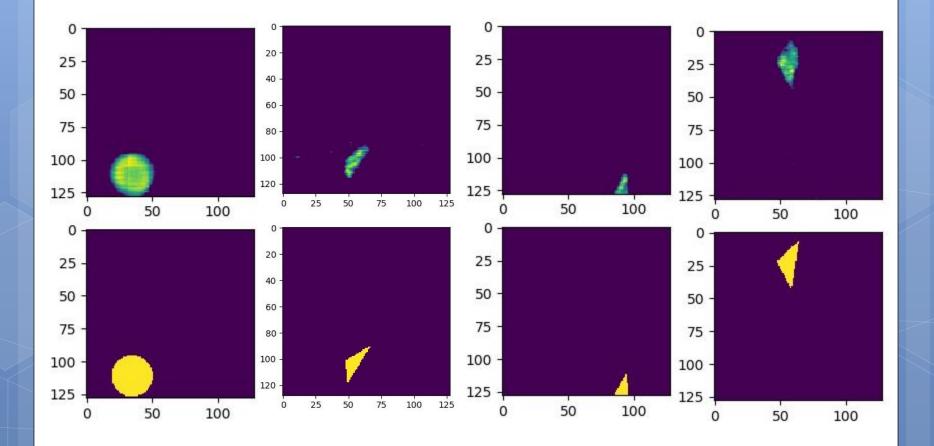
- Get sensor data: $\{\tilde{u}_k(\overrightarrow{x_{s_i}})\}_{i=1}^{\#sensors}$ for each sample
- Calculate MSE between ground truth
 {u_k(x_{si})}^{#sensors} and the prediction as component l₂
 Define the loss function for our network as:
 α · l₁ + (1 α) · l₂
 such that l₁ is the NLL loss described earlier

Numerical experiments

• Dirichlet BC

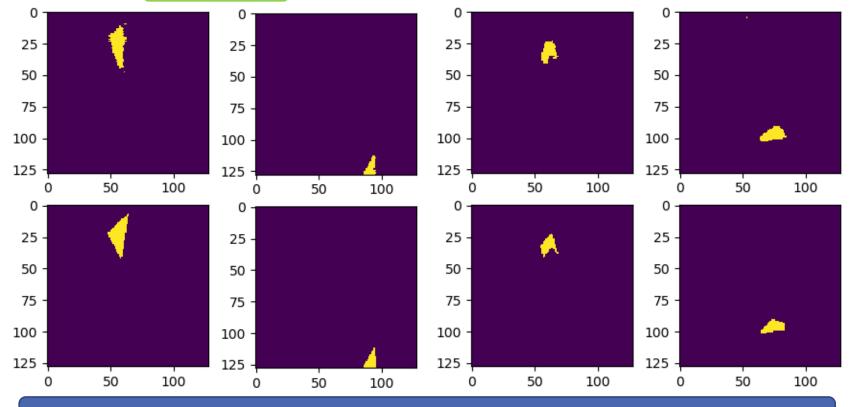
- Compact Gaussian initial condition
- Arbitrary polygonal obstacles
 - Generate number of edges
 - Generate edge length and angle
 - Generate location (x_0, y_0, z_0)
 - Enormous samples space
- Generated only 25,000 samples

Probability images



• Intersection over union: $0 \le IOU(A, B) = \frac{|A \cap B|}{|A \cup B|} \le 1$

• Up to 66% IOU score



A.K., E. Turkel, D. Givoli, S. Dekel, Journal of computational Physics, 2020

Agenda

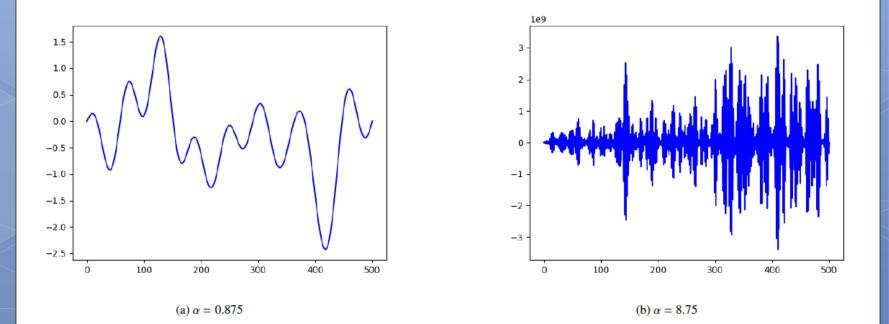
\circ Motivation \checkmark

• Data driven problems 🗸

- Obstacle identification and deep-learning
- Dealing with CFL instability using deep-learning

Explicit schemes and CFL

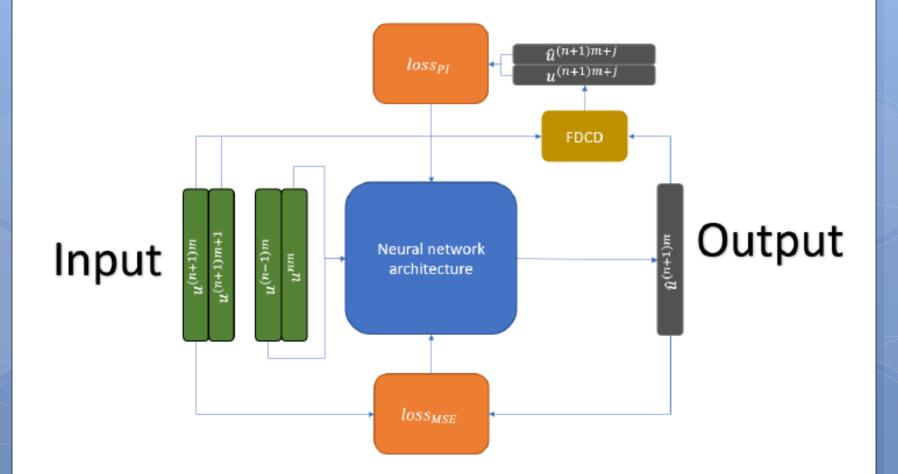
- One-dimensional wave equation
- CFL condition for stability: $\alpha = \frac{c\Delta t}{\Delta x} \le 1$ • FDCD: $u_i^{n+1} = 2u_i^n - u_i^{n-1} + \alpha^2(u_{i+1}^n - 2u_i^n + u_{i-1}^n)$



Network architecture

• Input: $u^{(n-1)m}$, u^{nm}

- Output: $u^{(n+1)m}$
- Spatio-temporal architecture
- Non-linear activation (PReLU)
- ${\rm \circ}$ Loss: MSE between $u^{(n+1)m}$ and $\hat{u}^{(n+1)m}$



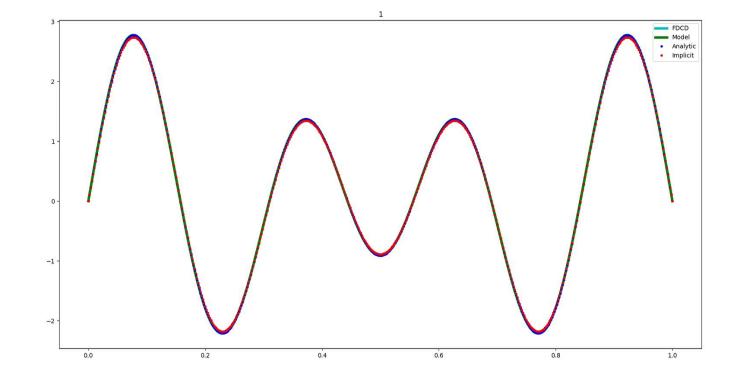
Physics informed loss

- Use $u^{(n-1)m}$, u^{nm} to predict $\hat{u}^{(n+1)m}$
- Inside the loss:
 - Use $u^{(n+1)m}$, $u^{(n+1)m+1}$ to calculate $u^{(n+1)m+j}$
 - Use $\hat{u}^{(n+1)m}$, $u^{(n+1)m+1}$ to predict $\hat{u}^{(n+1)m+j}$
 - ${\rm \circ}$ Calculate the MSE between $u^{(n+1)m+j}$ and $\hat{u}^{(n+1)m+j}$
- Network loss is the linear combination of the two MSE losses

Numerical experiments

- Dirichlet BC
- Data:
 - Linear combinations with random coefficients created from the basis $\{\sin(\pi kx)\}_{k=1}^{20}$
 - 1250 different initial condition and 397 time-steps for each one, total of 496,250 samples
 - Samples created with CFL = 0.875 and only each 10th sample was taken to get CFL = 8.75

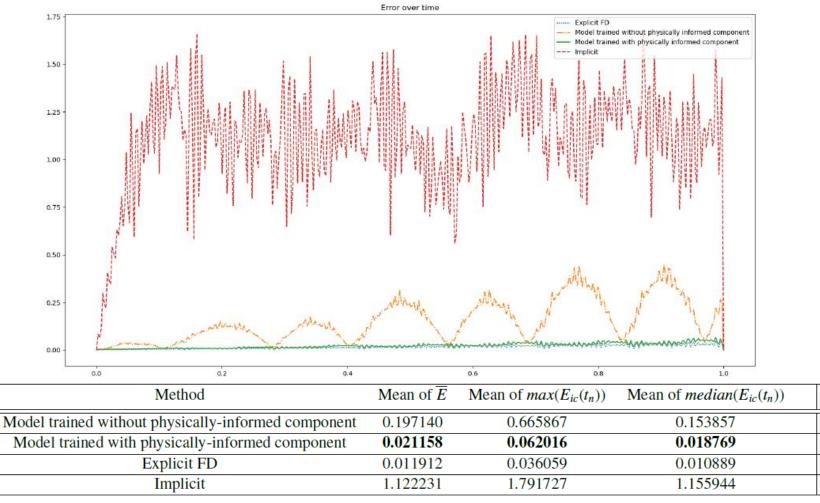
Results



☆ ← → ⊕ ♀ ₽

x=0.562097 y=2.40858

Results



O. Ovadia, A. K, E. Turkel, S. Dekel, Journal of computational physics, submitted

Summary and future work

- Obstacle location and identification
 Investigating source location
 High measurement noise
- Stability
 - Extending to 2,3 dimensions
 - Dispersion relation problem optimized kernels
 - Experimental data

Thanks!