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Underwater acoustics

 Sonar imaging
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The wave problem
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ሷ𝑢 Ԧ𝑥, 𝑡 = 𝑑𝑖𝑣 𝑐 Ԧ𝑥 2𝛻𝑢 Ԧ𝑥, 𝑡 , Ԧ𝑥 ∈ Ω, t ∈ (0, 𝑇]

𝑢 Ԧ𝑥, 0 = 𝑢0 Ԧ𝑥 , Ԧ𝑥 ∈ Ω

ሶ𝑢 Ԧ𝑥, 0 = ሶ𝑢0 Ԧ𝑥 , Ԧ𝑥 ∈ Ω

𝑢 Ԧ𝑥, 𝑡 = 𝑓 Ԧ𝑥, 𝑡 , Ԧ𝑥 ∈ 𝜕Ω1, t ∈ 0, 𝑇

𝛻𝑢 Ԧ𝑥, 𝑡 = 𝑔 Ԧ𝑥, 𝑡 , Ԧ𝑥 ∈ 𝜕Ω2, t ∈ [0, 𝑇]

𝜕Ω1 ∪ 𝜕Ω2 = 𝜕Ω

where    ሶ𝑢0 Ԧ𝑥 = 0 and 𝑓 Ԧ𝑥, 𝑡 = 𝑔 Ԧ𝑥, 𝑡 = 0



Ill-posed problems

 In an experiment, we store the pressure at a small 

number of sensors for all time steps

 We wish to find the properties of the source or 

obstacle from the data stored at these sensors 

where the number of sensors << mesh

 This is an inverse problem which is highly ill-posed

 Hence, one cannot usually reconstruct the initial 

conditions perfectly

 Can we solve these types of ill-posed problems 

with learning?
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Partial information
 “Recording” the solution at a small set of 

sensors placed in the domain Ԧ𝑥s𝑛 𝑛=1

𝐾
∈ Ω

 Data –

𝑢 Ԧ𝑥s1 , t

𝑢 Ԧ𝑥s2 , t

⋮
𝑢 Ԧ𝑥sn , t

+ 𝒩 𝜇, 𝜎2

 The ill-posedness raises sensitivity to noise at 

the sensors
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Data driven problems

 Supervised learning

 Input data

 Output labels

 Training

 Prediction (testing)

 Drawback - sensitivity
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Deep-learning

 Training “weights” to learn connections in the data

 Hidden multi-dimensional embeddings

 Convolutions, Fully connected

 “Deep” and non-linear

 Loss
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1 0 1
0 1 0
1 0 1

→

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6
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Physically-informed NN

 Input: set of points from the initial and boundary 

conditions

 Output: solution in the domain

 Loss: the problem
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Results
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Problem definition
Given the position of the source/s and data at a few 

sensors but many time slices find the location, size and 

shape of the unknown scatterers

Input: Sensors recordings (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑁𝑡𝑠𝑡𝑒𝑝𝑠 × 𝑁𝑠𝑒𝑛𝑠𝑜𝑟𝑠)

Output: Obstacle?
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Prior work

 Location Ԧ𝑥

 Shape and size –

 Circles: Radius

 Rectangles: Height and Width

 Complex shapes: need to be parametrized

 “Soft” obstacles –

 Semi-penetrable

 Multiphysics
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Labels solution - segments
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Labels are 𝑚 × 𝑛
binary matrices

Predictions will be 

𝑚 × 𝑛 probability 

matrices

Loss: NLL



Spatio-temporal architecture
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Loss diagram
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Probability 

map



Physically informed loss

 Using the segmentation network and output ෨𝑂

 Define a loss component based on:

 Solve: 𝑢𝑡𝑡 = 1 − ෨𝑂 𝑥 𝑐2(𝑥) Δ𝑢

 Get sensor data: 𝑢𝑘 𝑥𝑠𝑖 𝑖=1

#𝑠𝑒𝑛𝑠𝑜𝑟𝑠
for each sample

 Calculate MSE between ground truth 

𝑢𝑘 𝑥𝑠𝑖 𝑖=1

#𝑠𝑒𝑛𝑠𝑜𝑟𝑠
and the prediction as component 𝑙2

 Define the loss function for our network as:

𝛼 ⋅ 𝑙1 + 1 − 𝛼 ⋅ 𝑙2
such that 𝑙1 is the NLL loss described earlier
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Numerical experiments
 Dirichlet BC

 Compact Gaussian initial condition

 Arbitrary polygonal obstacles –

 Generate number of edges

 Generate edge length and angle

 Generate location (𝑥0, 𝑦0, 𝑧0)

❖ Enormous samples space

 Generated only 25,000 samples
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Probability images
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Neural network – results
 Intersection over union: 0 ≤ 𝐼𝑂𝑈 𝐴, 𝐵 =

𝐴∩𝐵

𝐴∪𝐵
≤ 1

 Up to  66% IOU  score

21

A.K., E. Turkel, D. Givoli, S. Dekel, Journal of computational Physics, 2020
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Explicit schemes and CFL
 One-dimensional wave equation

 CFL condition for stability: 𝛼 =
𝑐Δ𝑡

Δ𝑥
≤ 1

 FDCD: 𝑢𝑖
𝑛+1 = 2𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−1 + 𝛼2 𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛
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Network architecture

 Input: 𝑢 𝑛−1 𝑚, 𝑢𝑛𝑚

 Output: 𝑢 𝑛+1 𝑚

 Spatio-temporal architecture

 Non-linear activation (PReLU)

 Loss: MSE between 𝑢 𝑛+1 𝑚 and ො𝑢 𝑛+1 𝑚
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Network diagram
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Physics informed loss

 Use 𝑢 𝑛−1 𝑚, 𝑢𝑛𝑚 to predict ො𝑢 𝑛+1 𝑚

 Inside the loss:

 Use 𝑢 𝑛+1 𝑚, 𝑢 𝑛+1 𝑚+1 to calculate 𝑢 𝑛+1 𝑚+𝑗

 Use ො𝑢 𝑛+1 𝑚, 𝑢 𝑛+1 𝑚+1 to predict ො𝑢 𝑛+1 𝑚+𝑗

 Calculate the MSE between 𝑢 𝑛+1 𝑚+𝑗 and ො𝑢 𝑛+1 𝑚+𝑗

 Network loss is the linear combination of the two 

MSE losses

26



Numerical experiments
 Dirichlet BC

 Data:

 Linear combinations with random coefficients 

created from the basis sin 𝜋𝑘𝑥 𝑘=1
20

 1250 different initial condition and 397 time-steps for 

each one, total of 496,250 samples

 Samples created with CFL = 0.875 and only each 

10th sample was taken to get CFL = 8.75
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Results
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Results
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O. Ovadia, A. K, E. Turkel, S. Dekel, Journal of computational physics, submitted



Summary and future work

 Obstacle location and identification

 Investigating source location

 High measurement noise

 Stability

 Extending to 2,3 dimensions

 Dispersion relation problem – optimized kernels

 Experimental data
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Thanks!
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