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The wave problem
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lI-posed problems

In an experiment, we store the pressure at a small
number of sensors for all time steps

We wish to find the properties of the source or
obstacle from the data stored at these sensors
where the number of sensors << mesh

This is an inverse problem which is highly ill -posed

Hence, one cannot usually reconstruct the initial
conditions perfectly

Can we solve these types of ill -posed problems
with learning?




Partial information

» “Recording ” the solution at a small set of
sensors placed in the domain {a‘a } Nm

» Data —
o(@ M
6(@ M

e
o(o M)

0 0.5 1 1.5 2 2.5 3

» The ilkposedness raises sensitivity to noise at
the sensors
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Data driven problems

» Supervised learning i F\

» Input data R ’\

» Output labels @
» Training E @

» Prediction (testing) @ E@ E \m
) |

#
» Drawback - sensitivity D




Deep -learning

Training “weights ” to learn connections in the data
Hidden multi -dimensional embeddings
Convolutions, Fully connected

» “Deep ” and non -linear
» LOSS
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Physically -informed NN

» Input: set of points from the initial and boundary
conditions

» Output: solution in the domain
» Loss: the problem
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M. Raissi, P. Perdikaris, G.E. Karniadakis, Journal of computational Physics, 2018




Results
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Problem definition )

Given the position of the source/s and data at a few
sensors but many time slices find the location, size and
shape of the unknown scatterers

0 0.5 1 1.6 2 2.5 3

Input: Sensorsrecordings ( U 0 0 )
Output: Obstacle?




Prior work

L ocation @

» Shape and size —
» Circles: Radius
» Rectangles: Height and Width
» Complex shapes: need to be parametrized
» “Soft” obstacles —
» Semi-penetrable
» Multiphysics



Labels solution - segments

Labels are & €
binary matrices

Predictions will be
a & probability
matrices

Loss: NLL
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Spatio -temporal architecture
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Loss diagram

Wave
equation

Neural network
architecture 'éoutp Ut

Probability
map
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Physically informed loss

» Using the segmentation network and output 0
» Define a loss component based on:

» Solve: 6 ((p (3((1)))(5 (b)3~c’)

, Get sensor data: {6 (@)} for each sample

» Calculate MSE between ground truth
r — I_I . . 1
{6 (@)} and the prediction as component &

» Define the loss function for our network as:
| ta (P [|)ta
such that « is the NLL loss described earlier




»

»

»

Numerical experiments

Dirichlet BC

Compact Gaussian initial condition
Arbitrary polygonal obstacles -
» Generate number of edges

» Generate edge length and angle

» Generate location & ho ho

x Enormous samples space

Generated only 25,000 samples



Probability images
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Neural network —results

» Intersection over union: 1 00 (&) H D
» Up to 166% IOU score

25 25 25 25

30 50 30 50

75 75 75 75

A K., E. Turkel, D. Givoli, S. Dekel, Journal of computational Physics, 2020
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Explicit schemes and CFL

» One -dimensional wave equation

» CFL condition for stability: | — P
» FDCD: 0 co o) (6 co o )

(a) @ = 0.875 (b) @ =875




Network architecture

Input; 6¢ ) B

Output; 6¢ )

Spatio -temporal architecture
Non -linear activation ( PRelLU
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Loss: MSE between 6¢ 7 and 6¢( )



Network diagram

Neural network
architecture
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Physics informed loss

Useo( ) M  topredict 6¢ )

Inside the loss:

» Useol ) mC ) tocalculate o6¢ )

» Useol ) mC ) topredict 6¢ )

» Calculate the MSE between 6¢ ) and o¢

Network loss Is the linear combination of the two
MSE losses

)
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Numerical experiments

» Dirichlet BC

» Data.:

» Linear combinations with random coefficients
created from the basis {O E‘l Qd

» 1250 different initial condition and 397 time -steps for
each one, total of 496,250 samples

» Samples created with CFL = 0.875 and only each
10t sample was taken to get CFL =  8.75




Results

ws FDCD

w— Model
e Analytic
e Implicit

&l €[> Q=B




Error over time

Results

e Explicit FD
—-~ Mode! trained without physically infoermed component
—— Model trained with physically informed component
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Model trained with physically-informed component

Explicit FD
Implicit

submitted

73
Q

72

>
e

o
m

C

0

+—

©

+—

>

o
=

(@]

(@)

Y

o

'©

=

-}

o

-

[0

4

O

()]

S.

[0

4

S

=

—

L

N
<
8
O

O

>
O
O




Summary and future work

» Obstacle location and identification
» Investigating source location
» High measurement noise
» Stability
» Extending to 2,3 dimensions
» Dispersion relation problem — optimized kernels
» EXperimental data






