Duration: 240 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100 .

1. Determine as accurately as possible the limit as $n \rightarrow \infty$ of sequences with following general terms:
(a) $a_{n}=\frac{\cos (\pi n)}{n}$
(b) $b_{n+1}=b_{n}-\alpha b_{n-1}$, with $b_{0}=0, b_{1}=1$ as a function of α.

Note that one may write $b_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ for appropriately chosen constants c_{1}, c_{2}, r_{1}, and r_{2}.
(c)

$$
\begin{aligned}
& c_{n}=\sum_{k=0}^{k=n}(-1)^{k+1}(k+1) x^{k} \\
& \text { for }|x|<1
\end{aligned}
$$

2. Compute the following limits:
(a)

$$
\lim _{x \rightarrow 0}\left(\frac{\cos x-1}{x^{2}}\right)\left(\frac{2+2 x}{e^{2 x}}\right)
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{\sin x}{|x|}
$$

(c)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}}
$$

3. Consider functions $f(x)$ that are monotonically increasing and such that $\lim _{x \rightarrow \infty} f(x)=\infty$. Determine what possible values the limit below can take and give an example of a corresponding function $f(x)$ yielding that limit

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{\int_{0}^{x} f(t) d t}
$$

4. Calculate the following derivatives. Recall that $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-x^{2}} d x$.
(a)

$$
\frac{d}{d x}\left(\int_{0}^{1} \frac{2}{\sqrt{\pi}} e^{-(x+t)^{2}} d x\right)
$$

(b)

$$
\frac{d}{d t}\left(\int_{0}^{1} \frac{2}{\sqrt{\pi}} e^{-(x+t)^{2}} d x\right)
$$

(c)

$$
\frac{d}{d t}\left(\int_{0}^{t} \frac{2}{\sqrt{\pi}} e^{-(x+t)^{2}} d x\right)
$$

(d) $\frac{d y}{d x}$ given that $x^{2}+(x+y)^{2}=1$.
5. Compute the following integrals
(a) By parts: $\int e^{2 x} \cos (3 x) d x$
(b) Anyway you like: $\int_{0}^{1} \frac{x d x}{\left(1-x^{2}\right)^{3 / 2}}$
6. Surfaces and tangent planes
(a) Sketch the surface given by $z=f(x, y)=x^{4}-2 y^{4}$.
(b) Give an expression for the tangent plane to the surface $f(x, y)=z+z^{3}$ at the point $(0,1,-1)$.
7. Show that the volume V of a straight cone (with circular cross-section and symmetry axis perpendicular to the cross-section) of radius R and height h is given by $V=\pi R^{2} h$.
8. Consider that x-axis is the West-East axis and that the y-axis is the South-North axis. The density of pollution collected by a single passage of a filter fitted to an airplane is given by
$d(x, y, z)=5+x^{2}+y^{2}-z^{2}+x y^{2} \quad(\mathrm{~g} / \mathrm{km})$. How much pollution would be collected by a plane traveling at a height of $z=1 \mathrm{~km}$ and tracing the northern half of a semi-circle of radius 3 km centered at the origin?
9. Consider a closed curve C made of $y=0$ for $-1 \leq x \leq 1$ and the upper half-circle $x^{2}+y^{2}=1$, traced counter-clockwise and a vector field $\vec{F}(x, y)$
(a) Explain how you would compute the work $\oint_{C} \vec{F} \cdot \frac{d \vec{r}}{d t} d t$ for a conservative vector field without parametrizing C.
(b) Explain how you would compute the work $\oint_{C} \vec{F} \cdot \frac{d \vec{r}}{d t} d t$ for a non-conservative vector field without parametrizing C.
(c) Let $\vec{F}=<x y+y^{2}, 3 x-y^{2}>$. Determine if the field \vec{F} is conservative or not and compute the work.
10. Consider the part of the surface $z=4-x^{2}-y^{2}$ (in meters) oriented with its normal pointing up that lies above the unit circle centered at the origin in the $x y$-plane. What is the flux of water into that surface if the water velocity is $\vec{F}(x, y, z)=(2 x, 2 y,-4 z+1) \mathrm{m} / \mathrm{s}$? How long would it take to get 31.416 m^{3} of water through this surface?
11. General questions
(a) The vector field $\vec{F}=<y^{2} e^{x}+\sin x, 2 y e^{x}+3 y^{2}>$ is conservative. Find its potential.
(b) State the divergence (or Gauss's) theorem when applied to a one-dimensional domain which is a segment of the x-axis.
(c) Give a non-constant two-dimensional vector field \vec{F} whose magnitude is always 3 .
(d) Give two properties of the gradient of a function.
(e) Give the formula of a continuous function of one variable with a local maximum, a horizontal asymptote at $y=2$ and another one at $y=-2$.
(f) Is the following integral equal to a finite number? Explain.

$$
\int_{0}^{\infty} \frac{e^{-2 x}}{x^{1 / 4}+x} d x
$$

(g) Explain how the Jacobian can be used when computing a double integral.

