Duration: 240 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. A one-page crib sheet is allowed. Partial credit will be awarded for correct work. Each question is worth the same amount of points.

- 1. Short answer questions. Answer these in a few lines.
 - (a) For vectors \vec{a} and \vec{b} that are neither parallel, nor perpendicular to each other, sketch the three vectors \vec{a} , \vec{b} , and Proj_{\vec{a}}, \vec{b} in two-dimensions.
 - (b) Body Mass Index (BMI, B(m, h)) is a function of m (mass in kg) and h (height in m) whose ranges include underweight (BMI<18.5), normal weight (BMI: 18.5-24.9), overweight (BMI: 25-29.9) and obese (BMI>30). What do you think the signs of $\frac{\partial B}{\partial m}$ and $\frac{\partial B}{\partial h}$ are? Justify your answers.
 - (c) A region *R* is bounded by the curves $y = \frac{4}{x}$, $y = \frac{1}{x}$, $y = \frac{1}{x^2}$, and $y = \frac{3}{x^2}$. Find an appropriate change of variables *u* and *v* to evaluate the area of *R*. Find the Jacobian of that transformation.
 - (d) Maria has evaluated the following integral:

$$\int_{-2}^{2} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{-2}^{2} = -\frac{1}{2} - \left(\frac{1}{2}\right) = -1$$

What did Maria do wrong?

- (e) Jimmy has made the following argument regarding divergence of a series: "Consider the infinite series $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$. Since $\frac{1}{n(n-1)} = \frac{1}{n-1} \frac{1}{n}$, we can write the series as $\sum_{n=2}^{\infty} \frac{1}{n-1} \sum_{n=2}^{\infty} \frac{1}{n}$. The first series, $\sum_{n=2}^{\infty} \frac{1}{n-1}$ diveges due to the limit comparison test with $\frac{1}{n}$ and the second series, $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges by the *p*-test. Since both series diverge, their difference also diverges. "What did Jimmy do wrong?
- 2. True or False? Justify your answer either by counterexample or explanation.
 - (a) $\int_0^1 \int_x^1 f(x, y) dy dx = \int_0^1 \int_y^1 f(x, y) dx dy$
 - (b) It is possible for a continuous function f(x, y) to have two local minima and no local maxima
 - (c) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both do not converge, then $\sum_{n=1}^{\infty} a_n b_n$ also does not converge
 - (d) Given the parametric equations x = f(t) and y = g(t), if $\frac{dy}{dx} = \frac{dx}{dy}$, then f(t) = g(t) + C, where *C* is a constant.
 - (e) If f and g are increasing on an interval I, then fg is increasing on I.
- 3. Evaluate the following limits or explain why the limit does not exist.

(a)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin(x)}\right)$$
 (b) $\lim_{n \to \infty} (e^n + 3n)^{2/n}$ (c) $\lim_{(x,y) \to (0,0)} \frac{2xy}{4x^2 + y^2}$

4. Evaluate the following derivatives

(a)
$$\frac{dy}{dx}$$
 if $4x^5 + \tan(y) = y^2 + 5x$ (b) $\frac{d}{dx} \left(\int_1^{\sqrt{x}} \sin(t) dt \right)$

5. Evaluate the following definite or indefinite integrals (do not worry about simplifying fractions in your evaluation)

(a)
$$\int_{-1}^{1} \frac{e^x}{e^x - 1} dx$$
 (b) $\int_{0}^{\frac{\sqrt{3}}{2}} x^3 \sqrt{1 - x^2} dx$ (c) $\int \sin(\ln(t)) dt$

- 6. Consider the function $f(x) = \frac{1}{2-x}$.
 - (a) Find the Power Series Representation of f(x) assuming it is expanded about x = 0
 - (b) Find the Power Series Representation of f(x) assuming it is expanded about x = 1
 - (c) Are the radii/intervals of convergence for (a) and (b) the same? Why?
- 7. The function $f(x, y) = x^2 + 2xy + y^3$ represents the price of a sushi roll as a function of the price of rice per pound, *x*, and of the price of fish per ounce, *y*.
 - (a) Find a tangent plane approximation to f(x, y) at the point (1, 2)
 - (b) Use your answer from a) to estimate the price of a sushi roll if the price of rice is \$1.25/pound and that of fish is \$1.75/ounce.
 - (c) It turns out that the price of rice and the price of fish are time-dependent: the price of rice changes in time according to $x(t) = 1 + \sin t$ and that of fish according to $y(t) = t^3 2t^2 + 4$, Use the chain rule to calculate $\frac{df}{dt}$. Explain in words what $\frac{df}{dt}$ means.
- 8. Consider an object of density $f(x, y, z) = z(x^2 + y^2 + z^2)$ that is above the plane z = 0, below the cone $z = \sqrt{x^2 + y^2}$, and within the cylinder $x^2 + y^2 = 1$.
 - (a) Sketch the object
 - (b) Express the integral for the total mass in Cartesian coordinates. Do not evaluate.
 - (c) Express the integral for the total mass in cylindrical coordinates. Do not evaluate.
 - (d) Express the integral for the total mass in spherical coordinates. Do not evaluate.
- 9. Let $\vec{F} = \langle y^3, -x^3 \rangle$ be a vector field and *C* be the positively oriented circle of radius 2 centered at the origin.
 - (a) Set up the integral $\int_C \vec{F} \cdot d\vec{r}$ using a parameterization of *C*.
 - (b) Use Green's Theorem to set up the integral $\int_C \vec{F} \cdot d\vec{r}$.
 - (c) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ using either (a) or (b)
 - (d) Is \vec{F} conservative? If so, find the potential function f(x, y).
- 10. Consider the surface *S* (comprised of S_1 and S_2) of the solid *V* bounded by $z = x^2 + y^2$ and z = 4 (see picture on the right) and the vector field $\vec{F} = y^2 z^3 \mathbf{i} + 2yz \mathbf{j} + 4z^2 \mathbf{k}$. Assume *S* is positively oriented.
 - (a) Evaluate $\iint_{S_2} \vec{F} \cdot \hat{n} \, dS_2$.
 - (b) Evaluate $\iint_S \vec{F} \cdot \hat{n} \, dS$ without parameterizing the surface.
 - (c) Use your answers from (b) and (c) to deduce the value of $\iint_{S_1} \vec{F} \cdot \hat{n} \, dS_1$.

