Duration: 240 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. A one-page crib sheet is allowed. Partial credit will be awarded for correct work. Each question is worth the same amount of points.

1. Short answer questions. Answer these in a few lines.
(a) For vectors \vec{a} and \vec{b} that are neither parallel, nor perpendicular to each other, sketch the three vectors \vec{a}, \vec{b}, and $\operatorname{Proj}_{\vec{a}} \vec{b}$ in two-dimensions.
(b) Body Mass Index (BMI, $B(m, h)$) is a function of m (mass in kg) and h (height in m) whose ranges include underweight ($\mathrm{BMI}<18.5$), normal weight (BMI: 18.5-24.9), overweight (BMI: 25-29.9) and obese ($\mathrm{BMI}>30$). What do you think the signs of $\frac{\partial B}{\partial m}$ and $\frac{\partial B}{\partial h}$ are? Justify your answers.
(c) A region R is bounded by the curves $y=\frac{4}{x}, y=\frac{1}{x}, y=\frac{1}{x^{2}}$, and $y=\frac{3}{x^{2}}$. Find an appropriate change of variables u and v to evaluate the area of R. Find the Jacobian of that transformation.
(d) Maria has evaluated the following integral:

$$
\int_{-2}^{2} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{-2} ^{2}=-\frac{1}{2}-\left(\frac{1}{2}\right)=-1
$$

What did Maria do wrong?
(e) Jimmy has made the following argument regarding divergence of a series: "Consider the infinite series $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$. Since $\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}$, we can write the series as $\sum_{n=2}^{\infty} \frac{1}{n-1}-\sum_{n=2}^{\infty} \frac{1}{n}$. The first series, $\sum_{n=2}^{\infty} \frac{1}{n-1}$ diveges due to the limit comparison test with $\frac{1}{n}$ and the second series, $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges by the p-test. Since both series diverge, their difference also diverges. " What did Jimmy do wrong?
2. True or False? Justify your answer either by counterexample or explanation.
(a) $\int_{0}^{1} \int_{x}^{1} f(x, y) d y d x=\int_{0}^{1} \int_{y}^{1} f(x, y) d x d y$
(b) It is possible for a continuous function $f(x, y)$ to have two local minima and no local maxima
(c) If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both do not converge, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ also does not converge
(d) Given the parametric equations $x=f(t)$ and $y=g(t)$, if $\frac{d y}{d x}=\frac{d x}{d y}$, then $f(t)=g(t)+C$, where C is a constant.
(e) If f and g are increasing on an interval I, then $f g$ is increasing on I.
3. Evaluate the following limits or explain why the limit does not exist.
(a) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin (x)}\right)$
(b) $\lim _{n \rightarrow \infty}\left(e^{n}+3 n\right)^{2 / n}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{4 x^{2}+y^{2}}$
4. Evaluate the following derivatives
(a) $\frac{d y}{d x}$ if $4 x^{5}+\tan (y)=y^{2}+5 x$
(b) $\frac{d}{d x}\left(\int_{1}^{\sqrt{x}} \sin (t) d t\right)$
5. Evaluate the following definite or indefinite integrals (do not worry about simplifying fractions in your evaluation)
(a) $\int_{-1}^{1} \frac{e^{x}}{e^{x}-1} d x$
(b) $\int_{0}^{\frac{\sqrt{3}}{2}} x^{3} \sqrt{1-x^{2}} d x$
(c) $\int \sin (\ln (t)) d t$
6. Consider the function $f(x)=\frac{1}{2-x}$.
(a) Find the Power Series Representation of $f(x)$ assuming it is expanded about $x=0$
(b) Find the Power Series Representation of $f(x)$ assuming it is expanded about $x=1$
(c) Are the radii/intervals of convergence for (a) and (b) the same? Why?
7. The function $f(x, y)=x^{2}+2 x y+y^{3}$ represents the price of a sushi roll as a function of the price of rice per pound, x, and of the price of fish per ounce, y.
(a) Find a tangent plane approximation to $f(x, y)$ at the point $(1,2)$
(b) Use your answer from a) to estimate the price of a sushi roll if the price of rice is $\$ 1.25 /$ pound and that of fish is $\$ 1.75$ /ounce.
(c) It turns out that the price of rice and the price of fish are time-dependent: the price of rice changes in time according to $x(t)=1+\sin t$ and that of fish according to $y(t)=t^{3}-2 t^{2}+4$, Use the chain rule to calculate $\frac{d f}{d t}$. Explain in words what $\frac{d f}{d t}$ means.
8. Consider an object of density $f(x, y, z)=z\left(x^{2}+y^{2}+z^{2}\right)$ that is above the plane $z=0$, below the cone $z=\sqrt{x^{2}+y^{2}}$, and within the cylinder $x^{2}+y^{2}=1$.
(a) Sketch the object
(b) Express the integral for the total mass in Cartesian coordinates. Do not evaluate.
(c) Express the integral for the total mass in cylindrical coordinates. Do not evaluate.
(d) Express the integral for the total mass in spherical coordinates. Do not evaluate.
9. Let $\vec{F}=\left\langle y^{3},-x^{3}\right\rangle$ be a vector field and C be the positively oriented circle of radius 2 centered at the origin.
(a) Set up the integral $\int_{C} \vec{F} \cdot d \vec{r}$ using a parameterization of C.
(b) Use Green's Theorem to set up the integral $\int_{C} \vec{F} \cdot d \vec{r}$.
(c) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ using either (a) or (b)
(d) Is \vec{F} conservative? If so, find the potential function $f(x, y)$.
10. Consider the surface S (comprised of S_{1} and S_{2}) of the solid V bounded by $z=$ $x^{2}+y^{2}$ and $z=4$ (see picture on the right) and the vector field $\vec{F}=y^{2} z^{3} \mathbf{i}+2 y z \mathbf{j}+$ $4 z^{2} \mathbf{k}$. Assume S is positively oriented.
(a) Evaluate $\iint_{S_{2}} \vec{F} \cdot \hat{n} d S_{2}$.
(b) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} d S$ without parameterizing the surface.
(c) Use your answers from (b) and (c) to deduce the value of $\iint_{S_{1}} \vec{F} \cdot \hat{n} d S_{1}$.

