Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2022

Instructions: This examination lasts 4 hours. Each problem is worth 20 points. While there are 8 problems, your total score will be calculated by adding up your 6 highest scores. Hence, the maximum total score is $6 \times 20 = 120$ points. Show explicitly the steps and calculations in your solutions. Credit will not be given to answers without explanation. Partial credit will be awarded for relevant work.

1. (a) By solving $A\mathbf{x} = \mathbf{0}$, find a basis for the null space of A

$$A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$
 (1)

- (b) For $\mathbf{u} = \begin{bmatrix} 1 & 0 & 2 & 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$, let S be the linear subspace of \mathbb{R}^4 spanned by \mathbf{u} and \mathbf{v} (i.e. $S = \text{Span}\{\mathbf{u}, \mathbf{v}\}$). Find a basis for the orthogonal complement S^{\perp} of S.
- 2. In your TA discussion, where you review how to compute the eigenvalues and eigenvectors of a square matrix, you use the following two 2×2 matrices:

$$X = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}.$$
 (2)

Based on the results for X and Y, a student comes up with the following conjecture: for any real $n \times n$ matrix, (1) all eigenvalues are real and (2) n linearly independent eigenvectors can be found.

- (a) Find a counterexample to each part of the conjecture.
- (b) Can you give a correct statement for some class of matrices?
- 3. Let R be a rotation matrix

$$R = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}, \quad \theta \in \mathbb{R}.$$
 (3)

- (a) Express the following quantities in terms of θ :
 - the 1-norm $||R||_1$ of R,
 - the ∞ -norm $||R||_{\infty}$ of R,
 - the 2-norm $||R||_2$ of R,
 - the spectral radius $\rho(R)$ of R.
- (b) Compare the magnitudes of $||R||_1$, $||R||_{\infty}$, $||R||_2$, and $\rho(R)$.
- 4. We want to solve the following linear recurrence relation using eigenvalues and eigenvectors:

$$a_{n+2} = 6a_{n+1} - 8a_n$$
 with $a_1 = 1$ and $a_2 = 4$. (4)

(a) Find A satisfying

$$\mathbf{x}_{n+1} = A\mathbf{x}_n, \quad \text{where } \mathbf{x} = \begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}.$$
 (5)

- (b) Diagonalize $A = PDP^{-1}$.
- (c) Using $\mathbf{x}_{n+1} = A^n \mathbf{x}_1$, express a_n in terms of n.

5.

$$P = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}.$$
 (6)

- (a) Express P as $P = \mathbf{v}\mathbf{v}^T$ for a vector \mathbf{v} .
- (b) Can you give a physical interpretation of P as a linear transformation $\mathbb{R}^3 \to \mathbb{R}^3$: $\mathbf{x} \mapsto P\mathbf{x}$?
- (c) What is P^{100} ? (Hint: Use the result of either (a) or (b))
- (d) What is the rank of P?
- (e) Find a vector \mathbf{u} such that \mathbf{u} is orthogonal to the null space of P.
- 6. The singular value decomposition of A is given as follows:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = U\Sigma V^{T}.$$
(7)

- (a) What is the rank of A?
- (b) Write down an orthornomal basis of the range space of A.
- (c) Write down an orthonormal basis of the null space of A.
- (d) Can we obtain other singular value decompositions of A using

$$\bar{U} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{or} \quad \tilde{U} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
(8)

instead of U? If so, what kind of changes are needed for Σ or V in each case?

7. We want to find the *best* linear fit to the following points:

$$\{(-1,0), (0,0), (0,1), (1,2)\}.$$
(9)

- (a) By constructing a normal system, find the least-squares fit y = ax + b.
- (b) Plot the best linear fit with the data points.
- (c) Briefly explain in which sense the least-squares fit is optimal.
- 8. Consider the three vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 3\\0\\3\\0 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 5\\3\\1\\-1 \end{bmatrix}.$$
(10)

- (a) Perform the Gram-Schmidt process to find an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ for the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- (b) Using the result of (a), find the following decomposition

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}.$$
 (11)