Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2025

Instructions: This examination lasts 4 hours. Each problem is worth 15 points. While there are 10 problems, your total score will be calculated by adding up your 8 highest scores. Hence, the maximum total score is $8 \times 15 = 120$ points. Show explicitly steps and computations in your solutions. Credit will not be given to answers without explanation. Partial credit will be awarded to relevant work.

- 1. (a) Provide an example of a linear system with 3 equations and 3 unknowns with infinitely many solutions. Explain.
 - (b) Provide an example of a linear system with 2 equations and 3 unknowns with no solutions. Explain.
 - (c) Suppose x^* is a solution to the linear system Ax = b. Explain why this solution is unique if A has linearly independent columns.
- 2. Determine all values of b and q such that the following linear system has at least one solution:

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & b & 0 \\ 2 & 4 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} q \\ 1 \\ 4 \end{bmatrix}.$$
 (1)

3. (a) Let

$$Q = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}.$$
 (2)

Compute the eigenvalues of Q.

- (b) Prove that the eigenvalues of a real orthogonal matrix have modulus one.¹
- (c) Find all the elements of the set S given by

$$\mathcal{S} = \left\{ C \in \mathbb{R}^{3 \times 3} \colon C \text{ is orthogonal, symmetric, and positive definite} \right\}.$$
 (3)

- 4. Let $A = I + ww^{\top}$, where w is a column vector in \mathbb{R}^n with $||w||_2 = 1$ and I is the $n \times n$ identity matrix.
 - (a) Prove that A is invertible, with

$$A^{-1} = I - \frac{1}{2} w w^{\top}.$$
 (4)

- (b) What are the eigenvalues and the corresponding eigenvectors of A^{-1} ? Explain.
- 5. A Toeplitz matrix A is a matrix whose elements satisfy the following property: $A_{i,j} = A_{i+1,j+1}$. An example of a 4×4 Toeplitz matrix is the following:

$$\begin{bmatrix} 1 & -3 & 0 & 4 \\ \pi & 1 & -3 & 0 \\ 2 & \pi & 1 & -3 \\ 8 & 2 & \pi & 1 \end{bmatrix}.$$
(5)

Prove that the set of 4×4 Toeplitz matrices forms a vector space.

6. Prove that if v_1, v_2 are non-zero column vectors in \mathbb{R}^2 and are linearly independent, then that the 2×2 matrix

$$M = v_1 v_1^\top + v_2 v_2^\top \tag{6}$$

is invertible.

¹Note that the modulus of a complex number a + bi $(a, b \in \mathbb{R})$ is defined as $\sqrt{a^2 + b^2}$.

7. Let $A \in \mathbb{R}^{m \times n}$, where $m \ge n$ and A has full column rank.

(a) Derive the expression for the orthogonal projection \mathbf{b}_C of a vector \mathbf{b} onto the column space of A, which is given by

$$\mathbf{b}_C = A(A^{\top}A)^{-1}A^{\top}\mathbf{b}.$$
 (7)

(b) Derive the expression for the orthogonal projection \mathbf{b}_N of a vector \mathbf{b} onto the null space of A^{\top} , which is given by

$$\mathbf{b}_N = (I - A(A^{\top}A)^{-1}A^{\top})\mathbf{b}.$$
(8)

- 8. Let $x, y \in \mathbb{R}^n$ be non-zero vectors.
 - (a) By considering the inequality

$$0 \le \left\| \frac{x}{\|x\|_2} - \frac{y}{\|y\|_2} \right\|_2^2,\tag{9}$$

prove the Cauchy-Schwarz inequality for the 2-norm: $x^{\top}y \leq ||x||_2 ||y||_2$.

(b) Using part (a), prove that the vector 2-norm satisfies the triangle inequality, i.e.,

$$\|x + y\|_2 \le \|x\|_2 + \|y\|_2. \tag{10}$$

(c) Using part (b), prove that the matrix 2-norm also satisfies the triangle inequality, i.e., if A and B are $n \times n$ matrices, then

$$\|A + B\|_2 \le \|A\|_2 + \|B\|_2, \tag{11}$$

where the matrix 2-norm is defined as

$$||C||_2 = \max_{z \neq 0} \frac{||Cz||_2}{||z||_2}.$$
(12)

9. Let $A \in \mathbb{R}^{m \times n}$.

- (a) Prove that if $p \in \text{Range}(A)$ and $q \in \text{Null}(A^{\top})$, then $p^{\top}q = 0$.
- (b) Prove that if $b \in \text{Range}(A)$ and $b \in \text{Null}(A^{\top})$, then b = 0.
- (c) Prove that if $z \in \text{Null}(A^{\top}A)$, then $z \in \text{Null}(A)$. (Hint: Let b = Az and use part (b).)

10. Short answers. Determine whether the following statements are true or false. Explain your reasoning.

- (a) If all of the eigenvalues of a matrix Z are 0, then Z is the zero matrix.
- (b) If A and B are invertible $n \times n$ matrices, then their product AB is also invertible.
- (c) Let w_1, w_2 be two linearly independent vectors in \mathbb{R}^3 . Then $\{w_1, w_2\}$ is a basis for \mathbb{R}^2 .