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Radial basis functions (RBF)

» The RBF approach is generally aftributed to Rolland Hardy, who in
1971 proposed it for the purpose of interpolating scattered 2-D data.

» In 1990 Edward J. Kansa recognized the ability of RBFs to provide
accurate approximations for derivatives of functions known only at
scattered data.

» This opened the door for using RBFs to solve PDEs.



Radial basis functions (RBF)

Properties of RBF methods:

» It is a meshless method.
» Easy local grid refinement.

» There are two main methods, global and RBF-FD. Global methods
can achieve spectral convergence.

» Coding effort and computational cost of RBFs are independent of
the geometry and the dimension.



RBF inferpolation

Suppose you know the values of a function at a set of given points:
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with a; the interpolation coeficientes and the ¢s are the RBFs functions.



RBF inferpolation

The interpolation coefficients a; are calculated using collocation:
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To shorten the notation we will call A to the RBF interpolation matrix:
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RBF inferpolation

It is very common to add some low order polynomials to the
interpolation basis along with certain matching constraints:
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RBF inferpolation

There are many kinds of RBFs:

» Polyharmonic splines (PHS): rk if kis odd
r®In(r) if k is even
> Gaussian (GA): e ¢’

> Multiquadric (MQ): /1 + (er)?
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» Bessel (BE) (d=1,2,...) 2 ]
(er)2
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RBF inferpolation

1D interpolation example

m— sin(5x)+3
© data
== = |nterp. RBf no poly
Interp. RBF+poly

m= RBF: |r|3
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RBF interpolation

2D interpolation example: f(x, y) = sin(5x) cos(7y) + 3

f(x, y) RBF interpolation Interpolation error



RBF methods for PDEs

Kansa's idea is to express the solution of the equation as a linear
combination of RBFs:

Lu=f in 0
Bu =g indf




RBF methods for PDEs

The implementation of the boundary conditions is complicated...

» Increase the node density.
» Decrease shape parameter.

» Impose the equation over the boundary nodes, along the boundary
conditions, and add ghost nodes outside the domain to balance
the number of unknowns and the number of equations.



RBF-FD

In 1D finite differences formulas can be calculated using monomials as
test functions:

Lf(x) = ) wif (x1)
i=1




RBF-FD

This does not work well in higher dimensions or using scattered nodes.

ldea (A. |. Tolstykh 2000): Use RBF instead of monomials:
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RBF-FD

You can get better results augmenting the basis with polynomials:




RBF-FD

Example of the calculated Laplacian weights with the Gaussian RBF.




RBF-FD

For the polyharmonic r3 augmented with a constant you get the
weights -4.2426 for the central node and 1.0607 for the rest.

This might look worse than the result obtained by using the Gaussian,
but it has the advantage that you don't need to choose a value for .

The optimal value for € depends on the average distance between the
stencil nodes.



RBF-FD

Example, by Manuel Kindelan, of the effect of the polynomials in the
calculation of the first derivative of the function 1 + sin(4x) + cos(3x) +
sin(2x).

no poly

RBF: 7"3 constant
Stencil size: 37 5[ poly1
300 random node configurations. poly 2

poly 3




RBF-FD

From the previous system you get the FD coefficients for the inner
points.

If we use polyharmonic splines augmented with polynomials the
coefficients for the boundary conditions are calculated similarly:




RBF-FD

With this method you don’t have to do all the tricks you need for global
RBF methods as long as:

» The number of nodes per stencil is at least double the number of
polynomials used for the calculation of the weights.



Helmholtz equation

The Helmholtz equation:

VDV R Ecii=s inQ

ut+aD(m-Vu) =0 indQ
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Helmholtz equation

We are going to solve it using 10000 nodes, 300 of them on boundary,
which means an average distance between nodes of 0.017 .

We use
> 31 nodes stencils.
» polyharmonic splines of order 3 (¢p(r) = r3).

» Polynomials up to order four.



Helmholtz equation

Diffusion coefficient

g =0.8

w = (1/750) - 10° (Near infrared)
c0=3-10°

w 2
Source: e~ (507)




Helmholtz equation

Source: | used the first 58 frequencies.

Gaussian Pulse in Space Domain Gaussian Pulse in Frequency Domain

100 150
Frequency (f)




Helmholtz equation

Solution:




Helmholtz equation

Solution:




Helmholtz equation

The Helmholiz equation:
V(DVu) + k1u = s in Q\D
V(DVu) + k2éu =s inD
Up =u in oD
np - Vup =np-Vu in 6D

u+aD(n-Vu) =0 indQ

w

Here k1% = —4 + i— and k22 ="=12"1
c0 cO0



Numerical model

The model consists on 10000 nodes, 300 of
them on the outer boundary.

The average distance between nodes is
0.017.

The boundary of the object has 50 exira
nodes which are used twice to have as
many equations as unknowns.




Object’s boundary conditions

0.1 012 014 016 018 0.2 022 024 026 028 008 0.1 012 014 016 018 02 022 024 026 028




Helmholtz equation

Solution:




Helmholtz equation

Solution:




Helmholtz equation

Solution:




Iregular domain

|Iberian Peninsula|




Summary

» We have seen that RBFs can be used as very efficient interpolator.

» They can be used in different ways to solve PDEs.
» Global
» RBF-FD

» RBF-FD is an efficient and flexible method to solve PDEs in all kind of
domains.






