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Overview

My goal is to explain a new, deterministic solution to the Radiative Transport 
Equation.

This equation governs the behavior of radiant energy in a turbid medium.  Its 
solutions have applications in atmospheric science, reactor physics, computer 
graphics and biophotonics.

The purpose of this solution is to accurately and efficiently simulate the behavior 
of light in layered, biological tissue, for use in optical imaging.

Please ask questions when you have them.  Your understanding of this is 
important to me!



Background (Or: What is he talking 
about and why should I care?)



Light As Particles

Light is both a wave and a particle.

We will focus on light as a particle.

These particles (photons) move through 
media and are scattered and absorbed.

This gives us of conception of light as 
radiant energy moving through a 
medium.

www.scitecheuropa.eu



Turbid Media 

Material in which light is scattered and absorbed.

The following quantities are associated with it:

● μs: Scattering Coefficient
● μa: Absorption Coefficient
● μs + μa = μt: Total Attenuation 

These have the same units (1/mm).  They define length 
scales over which these events occur, are are functions 
of wavelength.

www.virtualphotonics.org



Absorption 

Absorption spectra can be highly structured, which 
gives us materials of different color.

Particles which absorb light are known as 
chromophores.

Absorption of a medium is a linear combination of 
chromophores with weights defined by 
concentration.

www.virtualphotonics.org



Scattering

Scattering direction is defined by the size and shape of 
the scattering particles. 

It is described by a scattering phase function (p), which 
defines a probability distribution of the scattered 
direction of a photon given its incident direction.

This function defines the following quantities:

● g: Anisotropy
● (1-g)μs=μs’: Reduced Scattering Coefficient 
● 1/(μs’+μa)=l*: Mean free path

www.virtualphotonics.org



Light and Biological Tissue

How a tissue scatters and absorbs 
light can tell us a great deal about it.

Examples:

● Blood flow
● Tissue oxygenation
● Burn wound depth
● Breast cancer detection

Image credit: bioopticsworld.com



Optical Imaging

Physiological information can be inferred from 
a tissue’s optical properties.

Common chromophores include hemoglobin, 
oxyhemoglobin, bulk lipids and water. [1]

Common scatterers include cell nuclei, collagen 
fiber bundles and some organelles. [2]

The use of light to interrogate tissue and obtain 
these, and other, physiological properties is 
called Optical Imaging.

Ponticorvo, et al, Biomed Exp. 2013



Length Scales

Different conceptions of light are useful on 
different length scales.

These length scales define situations in which 
we can model light continuously, despite its 
quantum nature.

We will focus on length scales found in 
biological tissues.

Features at these scales (skin layer thickness, 
vasculature, etc) are often larger than 1/μt, 
but may be smaller than 1/μt’.

www.virtualphotonics.org



The Radiative Transport Equation



The Radiative Transport Equation (RTE)

Originally published by Eugen von Lommel in 1887, the Radiative Transport 
Equation (RTE) describes the propagation of radiant energy through a scattering 
and absorbing medium in space and time.



The total change in radiant energy L at a position r, a direction Ω and a time t is equal to 
the sum of:
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Breaking Down The RTE

The total change in radiant energy L at a position r, a direction Ω and a time t is equal to 
the sum of:

1. Loss due to attenuation
2. Gain due to scattering
3. Gain due to sources



Common Simplifying Assumptions

1. Temporal steady state (dL/dt=0). Most, but not all, optical imaging modalities 
deal with time scales far greater than the time spent by photons in a 
medium.

2. Spherical scatterers.  Scattering in biological media is similar to that of 
poly-dispersed spherical scatterers.  Therefore, plane waves of light can be 
thought of as normally incident on scatters.  This reduces the argument of the 
scattering phase function at any point r to a single angle. [2]



Commonly Used Version Of The RTE



RTE Solutions
Stochastic Solutions (Monte Carlo)

● Analog (Howell 1968, others)
● Discrete/Continuous Absorption Weight (Spanier, Hayakawa, Venugopalan 2014) [3]

Deterministic Solutions 

● Spectral Methods
○ Diffusion Approximation (Ishimaru, 1989) [4]
○ Green’s Function (Kim, Keller, 2003, Machida et al 2013)  [5,6]
○ Delta P1 (Carp, Hayakawa, Venugopalan 2004) [7]
○ Spherical Harmonic Expansion with Fourier Coefficients (SHEFN) (Gardner, 2013) [8]

● Finite Element Method
○ Multigrid RTE (Gao, Zhao, 2009) [9] 



Solution Wish List

1. Accurately reconstruct radiance, as well as common functionals of radiance.
a. Fluence
b. Reflectance
c. Transmittance

2. Be robust to wide variations in source and media properties
3. Calculate as efficiently as possible.
4. Be usable in optical property recovery

Each method has strengths and weaknesses.  No one does it all.

Stochastic methods can be highly accurate, even in complex geometries, but are 
computationally expensive.

Deterministic methods are often much faster, but may not be accurate in constructing 
radiance at desired length scales.



Current Best Practice

The most accurate spectral, deterministic method for solving the RTE currently 
used is Adam Gardner’s Spherical Harmonic Expansion utilizing Fourier 
decomposition to order N (SHEFN). [8]

This method, when combined with a sequential order smoothing, has shown high 
levels of accuracy in reconstructing radiance and reflectance at medium surfaces.



New RTE Solution Method



New Method Goals

We will build on SHEFN by introducing a new method of solving the RTE which 
does not require post-processing for accuracy and is more robust to parameter 
changes.

This method will be capable of reconstructing radiance with angular 
discontinuities at medium boundaries, which SHEFN is not.



Assumptions

Medium is homogeneous and semi-infinite

● Infinite extent in x and y directions
● Infinitely deep in z (positive) direction
● Only non-scattering, non-absorbing air in 

negative z direction
● Boundary between air and medium is z = 0 

plane
● Refractive index mismatch at boundary

Collimated source that is external to medium

○ Decays exponentially in z

Medium

Positive z

Boundary

Source

Angle of 
Refraction

Angle of Incidence

Image credit: Gardner (2013)



Double Spherical Harmonic Expansion utilizing Fourier 
decomposition to order N

Deterministic, spectral method of solving the RTE, relying on 
Fourier methods (ideal for spatial frequency based 
imaging.)

At any point, represent upwardly and downwardly directed 
radiance indepently of each other, as linear combinations of 
compressed Spherical Harmonic Functions.

Double SHEFN or DSHEF Solution

Image credit: Florian Porkony



DSHEF Solution Overview

1. Represent scattered radiance as a vector of Double Spherical Harmonic 
Functions (DSHFs).

2. Convert differential and integral operators, as well source gain and 
attenuation terms, to matrices and vectors in a space corresponding to DSHFs.

3. Use Fourier Transforms in x and y to eliminate those partial derivatives to 
convert the RTE into an ODE system.

4. Calculate particular (using source gain) and homogeneous (using generalized 
eigenvalues) solutions by applying the Marshak Boundary Condition.



Scattered Radiance

Scattered Radiance (Ψ) is represented as a linear combination of DSHFs, with 
moments considered to be smooth functions of position.

Therefore, at any point in space, the angular distribution of radiance is 
represented as a single point in RM, where M=2(N+1)2. Thus, we think of Ψ as a 
point in RM.

The DSHEFN method relies on solving the RTE in this context, ultimately 
constructing a smooth function from R to RM.

The source gain term will be similarly decomposed, but with known moments.



Differential Term

Expanding the directional derivative in Cartesian coordinates and taking L2 inner 
products gives recurrence relations:



This leads to the construction of three matrices based on recurrence relations:

Differential Term



Integral Term

The integral operator is converted by first expanding the scattering phase function in terms 
of single spherical harmonics, then converting to double spherical harmonics by a 
conversion matrix C.

This is done to preserve cross talk between upwardly and downwardly directed scattered 
radiance.



Integral Term

We then integrate to reduce this term exploiting orthonormality to another series 
of recurrence relations:

As with the differential operator, these terms create a block matrix. Unlike the 
differential operator, the off diagonal blocks are nonzero: 

P1 governs scattering within one hemisphere.  P2 governs scattering from one 
hemisphere to another. It is important to note that they act without an absolute 
frame of reference.



Source Term

The source term is the contribution to scattered radiance from our collimated 
source.

It decays exponentially in z at a rate of μt/μ0 and at z=0 has moments given by 
the scattering phase function.

Expansion in the same manner as the scattering phase function yields:



IDE to PDEs to ODEs

We have now converted the RTE from an integral-differential equation to a 
system of partial differential equations:

This can then be converted to a system of ordinary differential equations by 
means of Fourier Transforms in x and y:



ODE System In Matrix Form

We can then complete our conversion of the original equation into matrix form, 
based upon the recurrence relations created and fixed wave numbers:

A B



Our solution has two components: particular and homogeneous. The particular is 
the more straightforward to obtain with an ansatz assuming the same decay as 
the source gain term:

Particular Solution



The homogeneous solution is more difficult, and may be defined an ansatz leading 
to the generalized eigenvalue problem:

From here, we see that solving the problem is equivalent to calculating wi.

It is important to note that only negative lambda terms will be included in the 
solution.

Homogeneous Solution



Boundary Conditions

Now, we use the Marshak Boundary Condition, which states that downwardly 
directed scattered radiance at the boundary must have been upwardly directed 
radiance which was internally reflected:

This simplifies to a matrix in whose null space the RTE solution must belong:

A simple matrix inversion will calculate w and thus complete the solution.



Multi Layer DSHEF



Layered Medium Structure

Medium now composed of multiple 
heterogeneous layers.

● Different absorption, scattering coefficients and 
phase functions in each layer

● Mimics structure of biological tissue
● No refractive index mismatch between layers

Medium

Positive z

Boundary

Source

Angle of 
Refraction

Angle of Incidence

Image credit: Gardner (2012)

Top Layer

Bottom 
Layer



Multilayer DSHEF relies on computing the solution to each layer as a coupled 
system. The coupling occurs by matching radiance at layer boundaries (zi

*):

Solution Method For K Layers



Eigenpair Structure in Layered System

Finite layer thickness means that eigenpairs with positive and negative values will 
now be used in the layers 1 through K-1. Only negative eigenpairs will be used in 
layer K.

We will denote positive and negative eigenvector matrices in layer i as Gi
+ and Gi

-, 
respectively.

We will also denote weight vectors in layer i corresponding to positive and 
negative eigenvectors as wi

+ and wi
-, respectively.

Weights for positive eigenvectors in layer i will be calculated using z=zi
*.

Weights for negative eigenvectors in layer i will be calculated using z=zi-1
*.



Boundary Conditions Between Layers

Radiance equality at layer boundaries creates the following:



Boundary Conditions

Boundary conditions between layers and at z=0 are applied concurrently in a 
single matrix inversion to calculate all weight vectors (3 layer example shown):



Results
We will consider results for a 2 layered medium.

Each layer will have a refractive index n=1.4 and l*=1mm with a Henyey-Greenstein 
scattering phase function, anisotropy g=0.8.  

Top layer:
● Thickness 0.1mm or 1mm
● μs’/μa = 3

Bottom layer:
● Semi-infinite
● μs’/μa = 100

Results will be shown for multiple spatial frequencies and orders of expansion.

Comparison to single SHEF13 and a Monte Carlo “gold standard” will also be shown.





















Computation Times

On “The Beast,” with 2 Xenon X5650 @ 2.67 GHz and 32 GB RAM, the following 
computation times were observed by MATLab’s “timeit()” function:

● DSHEF3: 1.96s
● DSHEF5: 3.25s
● DSHEF7: 4.93s
● DSHEF13: 14.39s
● SSHEF13: 5.13s

A 10M photon packet discrete absorption weight monte carlo simulation took >24 
hours on the same machine.



Conclusions

1. Both SHEFN and DSHEFN are capable of simulating radiance in layered media 
using similar boundary conditions.
a. These layers may be an order of magnitude thinner than l*.
b. Media need not be scattering dominant.

2. SHEFN shows the same difficulties it did with with homogeneous media.
a. Not robust to changes in spatial frequency, particularly when z > 0.  
b. Some of these (reflectance) are exacerbated in layered media.
c. DSHEFN shows the same robustness it did in homogeneous media.



Conclusion And Future Directions



We have seen:

1. A new spectral RTE solution based on double spherical harmonics
a. Robust to changes in spatial frequency and optical properties
b. Capable of reconstructing angular discontinuities at medium boundaries
c. Encodes important information about radiance in operator spectra

2. A boundary condition for SHEFN and DSHEFN allowing them to simulate 
radiance in layered media
a. Further evidence of robustness of DSHEFN



Future Directions - Operator Spectra

We have seen that radiance deep within a medium can be predicted by operator 
spectra.  A more detailed understanding of these spectra will enable:

1. The extraction of other information about radiance and functionals thereof.
2. An understanding of the relation between desired accuracy, optical 

properties and necessary order of expansion.
3. The bypass of eigenvector decomposition.

a. Overwhelming majority of computational expense located in this step.



Future Directions - SFD Imaging/Spectrocopy

Spatial Frequency Domain 
Imaging and Spectroscopy 
(SFDI/S) measures the 
reflectance of spatially 
modulated light to infer 
physiological properties of 
tissue.

DSHEFN, like SHEFN, is well 
suited to this modality due to 
its use of a single point 
source in the Fourier Domain.

Image Credits, top left 
clockwise: Cuccia 
(2005), 
medgadget.com, 
Ponicorvo (2013)



Future Directions - SFD Tomography

True depth resolved optical property recovery from SFD data remains elusive.

My ultimate goal with this research is to enable it using DSHEFN or a similar 
method.  This will require two major steps:

1. Dropping assumption of layered, homogeneous tissue.
2. Efficient solution to the often ill-posed “backward problem.”

a. Machine learning
b. Tikhonov regularization
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Thank You!
Questions, comments, concerns, hate mail?


