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Micro-organisms move in complex environments
at very small scales

Chlamydomonas, Sperm, C. Elegans, bacteria

Swim in a variety of media: water, cervical mucus, soil
* Focus on fluids with elasticity

Gait changes are observed as fluid changes
« Can be functionally important
* Focus on undulatory waving sheets

How does fluid elasticity effect swimming speed?
* Many different results in literature
* Incomplete picture, complicated problem
* Nonlinear interactions of fluid, body, gait...




Motivation: Sperm Gait in Different Fluids

fresh hyperactivated

1IN water

in viscoelastic
fluid

From: Suarez and Dai, "Hyper-activation enhances mouse sperm capacity
for penetrating viscoelastic media." Biology of reproduction 46.4 (1992): 686-691.

Is there a functional significance to these shapes and shape
changes?



Some Results on Locomotion in Complex Fluids

1979 Chaudhury (JEM) Asymptotic analysis, infinite sheet, 2" order fluid

1998 Fulford, Katz, Powell (Biorheology) Resistive force theory, general
linear fluid, shear thinning

2007 Lauga (PoF) Asymptotic analysis, infinite small amp., wavy sheet,
Oldroyd-B

2007,2009 Fu, Powers, Wolgemuth (PRL,PoF) Asymptotic analysis, UCM/
OB, helical

2010 Teran, Fauci, Shelley (PRL) Simulation, finite length, undulatory,
Oldoryd-B

2011 Shen, Arratia (PRL) Experiment, C. elegans (undulatory)
2011 Liu, Powers, Breuer (PNAS) Physical Experiment , helices

2013 Espinosa-Garcia, Lauga, Zenit (PoF) Phyiscal experiment, flexible tail

2013 Dasgupta, Liu,Fu,Berhanu,Breuer,Powers, Kudrolli (PRE) Physical
experiment, “infinite sheet” (cylinder)

2013 Spagnolie, Liu, Powers (PRL) Simulation, helices, Oldroyd-B

2013 Montenegro-Johnson,Smith,Loghin (PoF) Simulation, Carreau fluid

2014 Riley, Lauga: Asymptotic analysis, flexible wave sheet
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Oldroyd-B Model for Viscoelasticity

Stokes Equations with extra stress due to polymer siress: Tp

Au — vl) + &V - Tp + f—0. E polymer to solvent

viscosity ratio

V-u=0, : 7 rate-of-strain
_ ‘ T . tensor
D(‘(()’Tp/()f +u- VTP — Vu ’Tp - Tp Vu ) -+ Tp =% upper-convected
Maxwell

relaxation time

Deborah number: De= :
flow time scale

De is a measure of elasticity of the fluid
De— 0 recover Newtonian fluid

De— oo recover neo-Hookean elastic solid

Oldroyd-B model can also be derived from dilute
suspension of dumbbells connected by linear springs



Undulatory Swimmers in viscoelastic fluid

w 1. Asymptotic analysis: infinite length, small amplitude
« 2007, Lauga: Always slow down
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Undulatory Swimmers in viscoelastic fluid

W 1. Asymptotic analysis: infinite length, small amplitude
« 2007, Lauga: Always slow down

2. Simulations: finite length, large amplitude
« 2011, Teran-Fauci-Shelley: Non-monotonic speed up

De



Undulatory Swimmers in viscoelastic fluid

W

1. Asymptotic analysis: infinite length, small amplitude

« 2007, Lauga: Always slow down

2. Simulations: finite length, large amplitude

« 2011, Teran-Fauci-Shelley: Non-monotonic speed up

3. Biological experiment (C. Elegans): finite length, large amplitude

« 2011, Shen-Arratia: Always slow down
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Undulatory Swimmers in viscoelastic fluid

Kicker Burrower
Shen and Arratia (2011)
(a) U

Thomases, Guy (2014) Thomases, Guy (2014)
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Undulatory Swimmers in viscoelastic fluid

w 1. Asymptotic analysis: infinite length, small amplitude
« 2007, Lauga: Always slow down

2. Simulations: finite length, large amplitude
« 2011, Teran-Fauci-Shelley: Non-monotonic speed up

3. Biological experiment (C. Elegans): finite length, large amplitude
« 2011, Shen-Arratia: Always slow down

2014, Thomases-Guy: The gait is really important!

Kicker (head on right) Burrower (head on right)
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Undulatory Swimmers in viscoelastic fluid

/W 1. Asymptotic analysis: infinite length, small amplitude
« 2007, Lauga: Always slow down

2. Simulations: finite length, large amplitude
« 2011, Teran-Fauci-Shelley: Non-monotonic speed up

3. Biological experiment (C. Elegans): finite length, large amplitude
« 2011, Shen-Arratia: Always slow down

£ : — ; B : ~ 4. Physical experiment: finite length, large amplitude
« 2013, Espinosa-Garcia, Lauga, Zenit:
Monontonic speed up



Undulatory Swimmers in viscoelastic fluid

: i g2 . 4. Physical experiment: finite length, large amplitude
S = m g y p g ge amp
« 2013, Espinosa-Garcia, Lauga, Zenit:

/ BIG Monontonic speed up
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Model Equations

Fluid-Equations — Stokes-Oldroyd-B model
Au—-Vp+EV -1 +f =0,
V-u=0,
De(d1,/0t +u-V1, —Vut, — 1 Vul) + 1, =%
Structure Equations — penalty method (Immersed Boundary)
X = j O(x—X(s,t)u(xt)dx f = j O(x—X(s,t))F(s,t)ds
fluid body

SOFE E,, stiff penalty for stretching

F= Sx E=E +E “easy” to enforce

Prescribed body moments along

B 2
E, = 9 J (=1, (s,t))"ds the swimmer

worm

Rigid body: B>1 -readlized shape is very close to prescribed
shape

Flexible body: B=1 - elastic forces and viscous forces are of the
same scale and resultant shape is result of fluid-structure
interaction



Speed dependence on frequency is related to
swimmer body stiffness

Stokes (Newtonian) Fluid

0.3

0.25




Fluid elasticity measured with Deborah number

Change the Deborah number by changing the fluid or
changing the period of oscillation

De— A _ Viscoelastic relaxation time

T Period of oscillation

Numerical Simulations: Scale time by the period and thus
change the relaxation fime (Teran-Fauci-Shelley, Thomases-Guy)

Biological experiment: (Shen-Arratia) Cannot control period and
must change fluid (relaxation tfime)

Physical model: E-L-Z (2013) 2y o _
Changed the period j,

—2 -3 ~4\ !




Swimming speed for soft kicker

aka large amplitude tail, flexible body (B~1)
vary De “two ways”

_ A Viscoelastic relaxation time

De =
T Period of oscillation
1.5 : A
14! Vary period, T
1.3+
pd
2 1.2
D

Vary relaxation time, \

1.1+

1 ________________________
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De=)\/T

. Deborah number alone is not the whole story!



U/UN

Speed dependence on body stiffness
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Elasto-hydrodynamics

« Balance of viscous drag force with elastic rod force

Jy oy
Y __R
° ot ds*

« Define a dimensionless (inverse) body relaxation time, G.

T Period of oscillation g1
= = : 2 1.4
B7'(L' beam memory time e Vary T, Vary G
E
B % : Vary A, Fixed G
(G=Sp, sperm number) |
1 ________________________




Elastic induced shape changes

Elastic induced shape changes depend on G and De

Small amplitude theory: shape changes first order in
amplitude, swimming speed is second order

Use linear viscoelasticity
o Fulford et. al (1998), Fu-Wolgemuth-Powers (2007,2008)

Obtain a complex drag coefficient, depends on fluid

1+np/ns +2miDe ¢
o 1+2 ﬂ'lDe viscous

4”viscoelastic

Solve for shape changes as a function of driving
curvature

Can we do analysis for LARGE AMPLITUDE?



Large Amplitude: Motion of curvature deviations

* Drive our system with prescribed target curvature

 Derive PDE for curvature deviations (good approximation for
small amplitude or high stiffness limit)

BKO
. Gc —
SSSS at

» Solve for shape as a function of prescribed curvature

/ N\

resulting shape e :

: prescribed shape 1+n /n_+2riDe
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Flexors: non-translating target curvature

Consider a flexible beam that does not translate
horizontally, prescribe target curvature:

K, (s,t)=Asin(wt)

A=0.5 A=4.0




1.4

1.271

Flexors: compare simulation and theory

Amplitude, renormalized by Stokes

—De=0.5

low amp, hollow
—De=4.0]1

&

high amp, filled
/

1.5

1.4}

1.3}

1.2¢

1.1

Amplitude, renormalized by Stokes

(c) 4 2

very soft, B=0.1

moderately soft, B=1.0
2 2
i B
stiff, B=10.0
0 1 2 3 4
De

Emergence of three regimes, a very soft regime where the amplitude
is always boosted, a moderately soft regime with a non-monotonic response,
and a stiff regime with no amplitude boost



What about swimming?

first mode second mode sum of first two modes
low amp ===

high amp \,

K (s,t)=a, cos(2rt /T+¢ Yy, (s)+o,cos(2nt /T+¢, )y, (s)

Theoretical swimming speed in viscous fluid can be

computed:
<U>oc[g—l—1]iﬁy y dsdt
Cn LTv t

(U) <, sin(p,— ¢,)



Shape Comparisons: simulation and theory
(Low amplitude is spot on)

High amp, low De High amp, high De

3.5

A a1
| @ a2
| sin(Ag)

High amp, De = 0.5
10 10° 10

High amp, De = 4.0
10" 10° 10
G G

1 1

Like the flexor the theory predicts the shape changes very well!



Theoretical vs. simulation
swimming speed

Theory — Speed changes Simulations
due to shape changes include other fluid effects
<ot o, sin(¢,—¢.)
6 Stroke induced §wimming speed Stokes-normalized swimmjng speed
very sofl, 6=0-1 4 N L
al ol A"’"" L:«W\amp |
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What is the “fluid” effect?
i.e. minus shape changes

F}gtio of speed to stroke induced speed
5

<«—0o Data collapses
for low amplitude
0.8 e
This effect is likely to be
06" sensitive to specifics of
' the stroke
0.4 Something else
is going on in the
02+ high amplitude
case
(c)
O | | | |
0 1 2 3 4 o)



Theory ignores nonlinear elasticity effects

Softest, G=0.1

20
15
N~ 10
5
0

Target stroke not achieved.

Etfectively low amplitude
and low polymer stress.

Moderate, G=1.0

De=4.0

Stiffest, G=10.0

200

150
0

Target stroke strongly enforced.
Large polymer stress as a result.




Look at a measure of amplitude along side stress ratios

Average elastic-viscous stress ratio (b) Elastic-viscous stress ratio
T n igh De
mDe=05 (a)
B De=4.0
hollow markers, low amp - u

2 | filled markers, high amp
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It is only in the high amplitude and high De regime
. Where very large stresses develop .



Some conclusions

Espinosa-Garcia, Lauga, Zenit result has G=0.43, soft regime, expect
speed ups

Another numerical group reported only slow-downs,

2016, Salazar, Roma, Ceniceros, G=/.7B, stiff regime (L = 0.6,
G~B/L%), expect slow downs

Essential to report body relaxation time:

O

O

©)

2007 Lauga - small amplitude, large G, always slow down
2014 Riley, Lauga — small amplitude, vary G, speed up possible

2010 Teran, Fauci, Shelley - large amplitude, small G, sometimes
speed up

2011 Shen, Arratia- large amplitude (head), large G, always slow
down

2013 Espinosa-Garcia, Lauga, Zenit — large amplitude, small G,
always speed up

2016 Salazar, Roma, Ceniceros, large G, always slow down



Some questions

200
150
100
150
1
Away from the tail: linear elastic fluid assumption valide
What causes the large tail stresses?

What is the effect on swimming from the large tail (or head)
sfressese




