Arnold Kim,

Camille Carvalho,
Cory McCullough

SCATTERING BY TWO CLOSELY SITUATED SOUND-HARD SPHERES.

PROBLEM DESCRIPTION

Project Goals:

- Find the solution of the scattering problem,

$$
u:=u^{\mathrm{inc}}+u^{\mathrm{sca}}
$$

$$
\begin{array}{ll}
\nabla^{2} u+k u=0, & \text { in } E \\
\partial_{n} u=\partial_{n} u^{\text {sca }}+\partial_{n} u^{\text {inc }}=0, & \text { on } \partial E
\end{array}
$$

$$
\lim _{\xi \rightarrow \infty} \int_{|x| \rightarrow \xi}\left(\partial_{n} u^{\mathrm{sca}}-i k u^{\mathrm{sca}}\right) d s=0
$$

$$
u^{\mathrm{inc}}=e^{i k z}
$$

- Accurately compute solution when spheres are closely situated.

$$
\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|=2 a+\varepsilon, \quad \varepsilon \rightarrow 0^{+}
$$

- Compute the acoustic radiation force.
$\vec{F}_{k}=-\int_{B_{k}}\left\{\left[\frac{1}{2} \kappa_{0}\left\langle p_{1}^{2}\right\rangle-\frac{1}{2} \rho_{0}\left\langle v_{1}^{2}\right\rangle\right] \hat{n}+\rho_{0}\left\langle\left(\hat{n} \cdot \vec{v}_{1}\right) \vec{v}_{1}\right\} d S, \quad k=1,2\right.$.
- Need to know the field, u on each sphere to calculate the force.

$$
\vec{v}_{k}=\nabla u_{k} \quad p_{k}=i \rho_{0} \omega u_{k}
$$

Kleckner Lab
 @ U C M E R C E D

MOTIVATION: SELF ORGANIZATION WITH OPTICALLY BOUND COLLOIDS

Optical Binding

- Intense laser is used to create a force between individual particles.
- Highly tunable.
- Particles arrange in interesting geometries.

Acoustic Binding

- Analogous to optical binding
- Applications in self-assembling materials.

Khatri et. al. Journal of Computational Physics 423 (2020) 109798

SOLVING FOR THE SCATTERED FIELD USING A SYSTEM OF BOUNDARY INTEGRAL EQUATIONS (BIEs).

$$
\begin{aligned}
& \text { Representation Formula (a brief look) }
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\partial B_{2}} G\left(x, y_{2}\right) \partial_{n_{y_{2}}} u^{\mathrm{inc}}\left(y_{2}\right)+\partial_{n_{y_{2}}} G\left(x, y_{2}\right) u_{2}^{\mathrm{sca}}\left(y_{2}\right) \sigma_{y_{2}}, \quad x \in E \\
& \text { Where, } \quad G(x, y)=\frac{e^{i k|x-y|}}{4 \pi|x-y|}, \quad x, y \in \mathbb{R}^{3} . \\
& \text { A few skipped steps (they don't fit on this slide), } \\
& \text { and we arrive at... } \\
& u_{1}^{-2}\left(x_{1}^{b}\right)=\int_{B_{1}} C \\
& +\int_{\partial B_{2}} G\left(x_{1}^{b}, y_{2}\right) \partial_{n_{y_{2}}} u^{\mathrm{inc}}\left(y_{2}\right)+\partial_{n_{y_{2}}} G\left(x_{1}^{b}, y_{2}\right) u_{1}^{\mathrm{sca}}\left(y_{2}\right) d \sigma_{y_{2}}, \quad x_{1}^{b} \in B_{1} . \\
& u_{2}^{\mathrm{sca}}\left(x_{2}^{b}\right)=\int_{B_{2}} G\left(x_{2}^{b}, y_{1}\right) \partial_{n_{y_{1}}} u^{\mathrm{inc}}\left(y_{1}\right)+\partial_{n_{y_{1}}} G\left(x_{2}^{b}, y_{1}\right) u_{1}^{\mathrm{sca}}\left(y_{1}\right) d \sigma_{y_{1}} \\
& +\int_{\partial B_{2}} G\left(x_{2}^{b}, y_{2}\right) \partial_{n_{y_{2}}} u_{1}^{\mathrm{inc}}\left(y_{2}\right)+\partial_{n_{y_{2}}} G\left(x_{2}^{b}, y_{2}\right) u^{\mathrm{sca}}\left(y_{2}\right) d \sigma_{y_{2}}+\frac{u_{2}^{\mathrm{sca}}\left(x_{2}^{b}\right)}{2}, \quad x_{2}^{b} \in B_{2} .
\end{aligned}
$$

LAYER POTENTIAL INTEGRAL OPERATORS (SIMPLIFYING NOTATION)

BIE System

$$
\begin{aligned}
& u_{1}^{s \mathrm{ca}}\left(x_{1}^{b}\right)=\int_{B_{1}} G\left(x_{1}^{b}, y_{1}\right) \partial_{n_{y_{1}}} u^{\mathrm{inc}}\left(y_{1}\right)+\partial_{n_{y_{1}}} G\left(x_{1}^{b}, y_{1}\right) u_{1}^{\operatorname{sea}}\left(y_{1}\right) d \sigma_{y_{1}}+\int_{\partial B_{2}} G\left(x_{1}^{b}, y_{2}\right) \partial_{n_{y_{2}}} u^{\mathrm{inc}}\left(y_{2}\right)+\partial_{n_{y_{2}}} G\left(x_{1}^{b}, y_{2}\right) u_{1}^{\mathrm{cea}}\left(y_{2}\right) d \sigma_{y_{2}}+\frac{u_{1}^{\mathrm{cea}}\left(x_{1}^{b}\right)}{2}, \quad x_{1}^{b} \in B_{1} \text {. }
\end{aligned}
$$

Operator Notation

$$
\begin{aligned}
& u_{1}^{\mathrm{sca}}\left(x_{1}^{b}\right)=\mathcal{S}_{y_{1}}\left[\partial_{n_{y_{1}}} u^{\mathrm{inc}}\right]\left(x_{1}^{b}\right)+\mathcal{D}_{y_{1}}\left[u_{1}^{\mathrm{sca}}\right]\left(x_{1}^{b}\right)+\mathcal{S}_{y_{2}}\left[\partial_{n_{y_{2}}} u^{\mathrm{inc}}\right]\left(x_{1}^{b}\right)+\mathcal{D}_{y_{2}}\left[u_{2}^{\mathrm{sca}}\right]\left(x_{1}^{b}\right)+\frac{u_{1}^{\mathrm{sca}}\left(x_{1}^{b}\right)}{2} \\
& u_{2}^{\mathrm{sca}}\left(x_{2}^{b}\right)=\mathcal{S}_{y_{1}}\left[\partial_{n_{y_{1}}} u^{\mathrm{inc}}\right]\left(x_{2}^{b}\right)+\mathcal{D}_{y_{1}}\left[u_{1}^{\text {sca }}\right]\left(x_{2}^{b}\right)+\mathcal{S}_{y_{2}}\left[\partial_{n_{y_{2}}} u^{\mathrm{inc}}\right]\left(x_{2}^{b}\right)+\mathcal{D}_{y_{2}}\left[u_{2}^{\mathrm{sca}}\right]\left(x_{2}^{b}\right)+\frac{u_{2}^{\text {sca }}\left(x_{2}^{b}\right)}{2}
\end{aligned}
$$

BIE System (operator notation)

SPHERICAL HARMONICS: EXPLOITING THE GEOMETRY OF THE PROBLEM

Form a complete set of orthonormal functions.

- Form a basis for expansion of functions in 3-D (3-D analog of Fourier Series).
- Allow for major simplification of boundary integral equations (spoiler alert).

HARMONIC EXPANSIONS

$$
\begin{aligned}
G\left(r, \theta, \phi, r^{\prime}, \theta^{\prime}, \phi^{\prime}\right) & =i k \sum_{l, m} j_{l}(k r) h_{l^{\prime}}^{(1)}\left(k r^{\prime}\right) Y_{l}^{m}(\theta, \phi) \overline{Y_{m^{\prime}}^{l^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)} \\
\frac{\partial G}{\partial n_{y}}\left(r, \theta, \phi, r^{\prime}, \theta^{\prime}, \phi^{\prime}\right) & =i k \sum_{l, m} j_{l}(k r)\left[\partial_{r^{\prime}} h_{l^{\prime}}^{(1)}\left(k r^{\prime}\right)\right] Y_{l}^{m}(\theta, \phi) \overline{Y_{m^{\prime}}^{l^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)}
\end{aligned}
$$

Fundamental Solution (Green's Function)

$$
\begin{array}{rlr}
u_{1}^{\text {sca }}\left(\hat{x}_{1}\right)=\sum_{l, m} C_{l m}^{(1)} h_{l}^{(1)}\left(k r_{1}\right) Y_{l}^{m}\left(\theta_{1}, \phi_{1}\right) & u_{1}^{\mathrm{inc}}\left(\hat{x}_{1}\right)=\sum_{l, m} b_{l m}^{(1)} j_{l}\left(k r_{1}\right) Y_{l}^{m}\left(\theta_{1}, \phi_{1}\right) \\
u_{2}^{\text {sca }}\left(\hat{x}_{2}\right)=\sum_{l, m} C_{l m}^{(2)} h_{l}^{(1)}\left(k r_{2}\right) Y_{l}^{m}\left(\theta_{2}, \phi_{2}\right) & u_{2}^{\mathrm{inc}}\left(\hat{x}_{2}\right)=\sum_{l, m} b_{l m}^{(2)} j_{l}\left(k r_{2}\right) Y_{l}^{m}\left(\theta_{2}, \phi_{2}\right) \\
\text { Scattered Field } & \text { Incident Field }
\end{array}
$$

DIAGONAL AND OFF DIAGONAL LAYER POTENTIALS

Single-Layer

$$
\int_{B_{k}} G\left(x, y_{k}\right) \partial_{n_{y_{k}}} u^{\mathrm{inc}}\left(y_{k}\right) d \sigma_{y_{k}}=\mathcal{S}_{y_{k}}\left[\partial_{n_{y_{k}}} u^{\mathrm{inc}}\right](x), \quad k=1,2
$$

Double-Layer

$$
\int_{B_{k}} \partial_{n_{y_{k}}} G\left(x, y_{k}\right) u_{k}^{\mathrm{sca}}\left(y_{k}\right) d \sigma_{y_{k}}=\mathcal{D}_{y_{k}}\left[u_{k}^{\mathrm{sca}}\right](x), \quad k=1,2
$$

Layer potential operators applied to spherical harmonics

$$
\mathcal{S}\left[Y_{l}^{m}\right](\theta, \phi)=i k a^{2} j_{l}(k a) h_{l}^{(1)}(k a) Y_{l}^{m}(\theta, \phi) . \quad \mathcal{D}\left[Y_{l}^{m}\right](\theta, \phi)=i k a^{2} \partial_{r} j_{l}(k a) h_{l}^{(1)}(k a) Y_{l}^{m}(\theta, \phi)
$$

Vico et. al. [1]
Recall harmonic expansions

$$
\left.\begin{array}{rl}
G\left(r, \theta, \phi, r^{\prime}, \theta^{\prime}, \phi^{\prime}\right) & =i k \sum_{l, m} j_{l}(k r) h_{l^{\prime}}^{(1)}\left(k r^{\prime}\right) Y_{l}^{m}(\theta, \phi) \overline{Y_{m^{\prime}}^{l^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)}
\end{array} \quad u_{j}^{\mathrm{sca}}\left(x_{j}^{b}\right)=\sum_{l, m} C_{l m}^{(j)} h_{l}^{(1)}\left(k r_{j}\right) Y_{l}^{m}\left(\theta_{j}, \phi_{j}\right) j=1,2\right\} \overline{\partial G}\left(r, \theta, \phi, r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)=i k \sum_{l, m} j_{l}(k r)\left[\partial_{r^{\prime}} h_{l^{\prime}}^{(1)}\left(k r^{\prime}\right)\right] Y_{l}^{m}(\theta, \phi) \overline{Y_{m^{\prime}}^{l^{\prime}}\left(\theta^{\prime}, \phi^{\prime}\right)} \quad u_{j}^{\mathrm{inc}}\left(x_{j}^{b}\right)=\sum_{l, m} b_{l m}^{(j)} j_{l}\left(k r_{j}\right) Y_{l}^{m}\left(\theta_{j}, \phi_{j}\right) \quad l
$$

DIAGONAL AND OFF DIAGONAL LAYER POTENTIALS (CONTINUED)

$$
\begin{gathered}
\text { Diagonal Blocks } \\
\mathcal{D}_{y_{j}}\left[u_{j}^{\mathrm{sca}}\right]\left(\hat{x}_{j}\right)=i k^{2} a^{2} \sum_{l, m} C_{l m}^{(j)} \partial_{r} j_{l}(k a) h_{l}^{(1)}(k a) Y_{l}^{m}\left(\theta_{j}, \phi_{j}\right) \\
\mathcal{S}_{y_{j}}\left[\partial_{y_{j}} u_{j}^{\mathrm{inc}}\right]\left(\hat{x}_{j}\right)=i k^{2} a^{2} \sum_{l, m} b_{l m}^{(j)} \partial_{r} j_{l}(k a) j_{l}(k a) h_{l}^{(1)}(k a) Y_{l}^{m}\left(\theta_{j}, \phi_{j}\right) \\
j=1,2
\end{gathered}
$$

Off-Diagonal Blocks

> Need to find a way to evaluate a function "radiating" from sphere j onto sphere i.
(here is where we run into trouble)

$$
\begin{gathered}
\mathcal{D}_{y_{i}}\left[u_{i}^{\mathrm{sca}}\right]\left(x_{j}^{b}\right)=i a^{2} k^{2} \sum_{l, m} C_{l m}^{(i)}\left[\partial_{r} h_{l}^{(1)}(k a)\right] h_{l}^{(1)}\left(k(a) j_{l}\left(k r_{j}\left(\theta_{i}, \phi_{i}\right)\right) y_{l}{ }^{1}\left(\theta_{j}, \phi_{j}\right)\right. \\
\mathcal{S}_{y_{i}}\left[\partial_{n_{y_{i}}} u_{i}^{\mathrm{inc}}\right]\left(x_{j}^{b}\right)=i a^{2} k^{2} \sum_{l, m} b_{l m}^{(i)} h_{l}^{(1)}(k a)\left[\partial_{r} j_{l}(k a)\right] j_{l}\left(k r_{j}\left(\theta_{i}, \phi_{i}\right)\right) F_{l}^{m}\left(\theta_{j}, \phi_{j}\right) \\
i, j=1,2, \quad i \neq j
\end{gathered}
$$

VISUALIZING THE ISSUE

Mapping 1 onto 2

Mapping 2 onto 1

THE CLOSE EVALUATION PROBLEM

- Large error resulting from computing solution near the boundary using high order quadrature rule at fixed order.
- Non-uniform error.

Carvalho et. al. Journal of Computational Physics 423 (2020) 109798

QUESTIONS

