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About me
I study direct and inverse problems involving multiple scattering of light (and related
problems).

This research includes the following applied mathematics topics.

I PDEs and integral equations
I Asymptotics and perturbations
I Numerical analysis and scientific computing
I Waves in random media
I Inverse problems
I Multiscale modeling and simulation



Multiple scattering of light

Light scattering by a medium composed of a
distribution of scattering centers.

Examples

I Biological tissues
I Rain, fog, and clouds
I Atmospheric turbulence

Waves in random media. Model a medium as one realization of an ensemble with an
associated probability space.

Objective. Find canonical features in scattered light measurements that contain
information about the medium or targets contained within.
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Plasmonic cloaking

All-angle scattering cancellation in free
space with simple, homogeneous, and
isotropic cloaks.

I Works by cancelling scattering
I Supports a wide band of frequencies
I Convenient to fabricate
I No external power required

Research objective. Develop a computa-
tional model of these plasmonic cloaks for
investigating factors that lead to effective
cloaking.

Mühlig et al. (2013)

Egel et al. (2017)



Modeling plasmonic cloaking
We model this plasmonic cloak as a dielectric sphere surrounded by a random
distribution of point-like, gold scatterers.

I Foldy-Lax theory for scattering by point-like
scatterers

I Method of fundamental solutions for
scattering by the sphere

By combining these two scattering methods, we develop a computational model
capable of studying optical properties of plasmonic cloaks.



Foldy-Lax theory
The scattered field for N point-like scatterers located
at rn for n = 1, · · · ,N is

ψs(r) =
N∑
n=1

αn
eik |r−rn |

|r − rn |
ψE (rn),

with αn denoting the scattering strength and ψE de-
noting the exciting field at rn.

The exciting field at rn is given by

ψE (rn) = ψinc(rn) +
N∑

n′=1
n′,n

αn′
eik |r−rn′ |

|r − rn′ |
ψE (rn′).

This is just a linear system of equations for ψE (rn)
for n = 1, · · · ,N .
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Scattering strength
For a single point-like gold scatterer located at the origin, the scattered field is given by

ψs(r) = α
eikR

R
ψinc(0).

It follows that the scattering cross-section is

σs =

∫
S2

lim
R→∞

[
R2 |ψ

s(r)|2

|ψinc(0)|2

]
dω = 4π |α |2

Using the optical theorem, we find that the total scattering cross-section is

σt = σs + σa =
4π

k
Im[α].

Thus, knowing σs and σa for a gold nanoparticle allows us to determine α.



Method of fundamental solutions

I Introduced as a numerical method by
Mathon and Johnston (1977).

I Approximate the interior and scattered
fields by a superposition of finitely
many spherical waves, each of which
is an exact solution of the PDE.

I Strength of each spherical wave is
determined through the boundary
conditions.



Plasmonic cloaking model
The field inside the sphere with wavenumber k1 is
approximated by

ψ int(r) ≈
M∑
m=1

eik1 |r−ρ
int
m |

|r − ρint
m |

cint
m .

The field outside of the sphere with wavenumber k0
is approximated by

ψext(r) ≈
M∑
m=1

eik0 |r−ρ
ext
m |

|r − ρext
m |

cext
m +

N∑
n=1

αn
eik0 |r−rn |

|r − rn |
ψE
n .



Plasmonic cloaking model
We determine cint

m , cext
m , and ψE

n by requiring that

ψ inc + ψext = ψ int,

and
∂nψ

inc + ∂nψ
ext = ∂nψ

int

on |ρbdy
m | = a for m = 1, · · · ,M, and

ψE
n = ψ

inc(rn) + ψext(rn) +
N∑

n′=1
n′,n

αn′
eik0 |r−rn′ |

|r − rn′ |
ψE
n′,

for n = 1, · · · ,N .

Doing so yields a 2MN × 2MN linear system of equations.



Preliminary results
Preliminary results for a 500nm dielectric sphere with relative refractive index 1.5 and
5000 point scatterers (not gold) randomly distributed over the spherical shell
500nm < r < 520nm.



Future considerations

I Compute scattering strengths for gold nanoparticles and test the model for
various parameter settings.

I Use experimentally realistic number densities and volume fraction of gold
nanoparticles.

I Compare results with those obtained using effective medium theory.

I Compare with experimental measurements.

I Speed up computations by considering hierarchical matrix compression
techniques.

I Consider ensembles of these plasmonic cloaking structures.



Diffuse optical imaging of tissues
We seek to image subsurface objects situated in strongly scattering tissues from
measurements of backscattered light.

I Light becomes “diffuse” in strongly scattering
tissues.

I Even though objects are situated just below
the surface, measurements are dominated by
light scattered deep in the tissue.

I Need to extract information contained in
measurements of strongly scattered/fully
incoherent light.



Spatially modulated light

I Introduced by Cuccia et al. (2005) as a
means for imaging tissues.

I Projects Fourier patterns of light onto the
tissue sample.

I Images in the spatial frequency domain.

I Intuitively, the higher spatial frequencies
have a shorter penetration depth than
lower spatial frequencies because tissues
act as a low-pass filter.

Can we use spatially modulated light sources to image scattering and absorbing
objects in tissues?



Light propagation in tissues

Light propagation and scattering in tissues is governed by radiative transfer theory.

I Developed in the early 20th century to describe light scattering by planetary
atmospheres.

I It takes into account scattering and absorption by inhomogeneities.

I This theory assumes no phase coherence in its description of power transport
(addition of power).

I The specific intensity I(Ω,r) quantifies the power flowing in direction Ω and at
position r.



Light rays

In a homogeneous medium, there is no absorption or scattering, and so the intensity of
light is constant along straight lines or “rays.”

Mathematically, we write
Ω · ∇I = 0.



Absorption

When there is absorption, but no scattering, the intensity of light attenuates
(exponentially decays) along rays.

Mathematically, we write
Ω · ∇I + µa I = 0.



Scattering

When there is scattering, but no absorption the intensity of light is attenuated by light
that scatters away from direction Ω.

However, the intensity of light increases due to light scattering from some other
direction Ω′ into direction Ω.

Mathematically, we write

Ω · ∇I + µs − µs

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′ = 0.



Scattering phase function

The scattering phase function f gives the fraction of light scattered in direction Ω due
to light incident in direction Ω′.

The integral

µs

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′

is the light scattered in direction Ω due to the continuous sum of light incident over all
possible directions.



The radiative transfer equation

By combining our results for absorption and scattering, we come to an understanding
of the radiative transport equation

Ω · ∇I + µa I + µs I − µs

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′ = Q.

Here, Q denotes an emitting source.

This equation governs light propagation in tissues taking into account absorption,
scattering, and emission of light.

It is a partial differential/integral equation with 5 independent variables.



Boundary conditions

To solve
Ω · ∇I + µa I + µs I − µs

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′ = Q

in a domain D with boundary ∂D, we must prescribe boundary conditions of the form

I = Ib on Γin = {(Ω,r) ∈ S2 × ∂D,Ω · ν < 0}.



The direct scattering problem
The direct scattering problem is related to the following boundary value problem for the
radiative transfer equation

Ω · ∇I + µa(r)I + µs(r)
[
I −

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′
]
= 0 in z > 0,

I = δ(Ω − ẑ)
(
I0 + I1ei2π fmx

)
on Γin,

I → 0 z →∞.

We would like to solve this problem with piecewise constant parameters: µa and µs.

This is a computationally challenging problem to solve.



The inverse scattering problem
We take as measurements

bm(x, y) =
∫

NA
I(Ω, x, y,0)Ω · ẑdΩ

sampled over N (x, y)-pairs corresponding to pixel locations on the detector.

By considering M spatial frequencies, fm for m = 1, · · · ,M, we form the M × N data
matrix B,

B =


b1(x1, y1) · · · b1(xN , yN )
b2(x1, y1) · · · b2(xN , yN )

...
. . .

...

bM (x1, y1) · · · bM (xN , yN )


.

Given the M × N data matrix B, we seek to recover the locations and shapes of
scattering and/or absorbing objects in tissues.



Asymptotic analysis
In the limit of strong scattering and weak absoprtion, we can rescale the radiative
transfer equation using the small, dimensionless parameter ε according to

εΩ · ∇I + ε2µa + µs

[
I −

∫
S2

f (Ω ·Ω′)I(Ω′,r)dΩ′
]
= 0.

The asymptotic solution in the limit as ε → 0+ is given as (Larsen & Keller, 1974)

I = Φ︸︷︷︸
bdy layer

+ Ψ︸︷︷︸
interior

.

Rohde and Kim (2017) showed that the measurements in this asymptotic limit are
given by

bm(x, y) = α0
(
I0 + I1ei2π fmx

)
︸                  ︷︷                  ︸

bdy layer

+α1Uz(x, y,0) +O(ε2)︸                     ︷︷                     ︸
interior

.



Diffusion approximation
The function U satisfies the diffusion equation,

−∇ · (κ∇U) + µaU = 0

with
κ =

1

3µs(1 − g)
,

where g is the anisotropy factor.

I The diffusion approximation is well known and has been used extensively for
imaging in strongly scattering media.

I Conventional wisdom is that this diffusion approximation is not valid near sources
nor boundaries, but the boundary layer theory corrects these issues.

I Asymptotic theory of Rohde and Kim (2017) shows that diffusion is the correct
forward model for this imaging problem.



Reduced imaging problem
Instead of the radiative transfer equation, we solve

−∇ · (κ∇U) + µaU = 0 in z > 0,

U = I0 + I1ei2π fmx on z = 0,

and take as measurements

bm(x, y) = −κ∂zU(x, y,0).

We model the portion of the measurements that contain information about the
subsurface objects.

To solve the direct scattering problem with piecewise constant coeffients, we use the
Method of Fundamental solutions again.



Modeling the measurements
By linearizing the direct scattering problem for a point-like obstacle at rk , we find that

bm(x, y) ≈ U0
m(rk)αkGz(x, y,0; rk),

with U0
m denoting the homogeneous solution, αk denoting an absorbing strength, and

G denoting the fundamental solution satisfying

−∆G + k20G = δ(r − rk), k20 = µ0/κ0.

Here, µ0 and κ0 are the known background values.

For a medium composed of K point-like absorbers, the model for the measurements is
given by

B = A︸︷︷︸
U0

m(rk )

Λ︸︷︷︸
diag

X︸︷︷︸
indicator

.



Multiple signal classification
For an imaging region, we introduce a mesh with K nodes. Using the point-like
absorber model, we approximate measurements by

B = A (ΛX) .

I Measurements are linear combinations of the columns of the M × K matrix A.

I The columns of A that explain B correspond to the mesh nodes where there is an
object.

I By computing B = UΣVH to determine P = I − ŨŨH , we identify the columns of A
that explain B, and hence determine the mesh nodes where objects are located.

To construct an image, we plot log10[ηmin/ηk] where

ηk = ‖Pak ‖, k = 1, · · · ,K .



Numerical results
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Future considerations

I Consider realistic parameter settings and any restrictions on the number of spatial
frequencies possible.

I Develop algorithms that allow for this method to be used on experimental data.

I Develop a resolution analysis for this imaging problem in terms of the key
inverse-length scale

k0 =
√
µa/κ.

This imaging method is depth-limited and also size-limited.



Summary
Through these two problems, I have tried to show consistent themes that emerge in my
research projects.

I Collaboration.

I Strong connection to experimental science.

I Seek to make progress by combining elements of asymptotics, numerics,
modeling, etc.

I Emphasize care and systematic methods, but not necessarily rigor.


