Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2021

Instructions: This examination lasts 4 hours. Each problem is worth 20 points. While there are 9 problems, your total score will be calculated by adding up your 6 highest scores. Hence, the maximum total score is $6 \times 20 = 120$ points. Show explicitly the steps and calculations in your solutions. Credit will not be given to answers without explanation. Partial credit will be awarded for relevant work.

1. For the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix},\tag{1}$$

consider its fundamental subspaces, that is, the null spaces of A and A^T and the range (or column) spaces of A and A^T . For each vector space, find a basis. *Note:* You do not need to find orthogonal or orthonormal bases.

- 2. Assume that a time-dependent matrix A(t) (i.e. each component of A is a function of t) is invertible and differentiable for all t.
 - (a) Show that

$$\frac{dA^{-1}}{dt} = -A^{-1}\frac{dA}{dt}A^{-1}. (2)$$

Hint: $A(t)A^{-1}(t) = I$.

(b) By explicitly calculating both sides of (2), show that (2) indeed holds for

$$A(t) = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}. \tag{3}$$

3. Consider the following linear combination:

$$(1,2,3) = c_1(1,1,1) + c_2(1,1,0). (4)$$

- (a) Show that there do not exist c_1 and c_2 that satisfy (4).
- (b) Find optimal values of c_1 and c_2 . Explain in which sense these values are optimal.
- 4. Consider the following matrix

$$B = \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} . \tag{5}$$

- (a) Calculate the matrix norms $||B||_1$ and $||B||_{\infty}$.
- (b) Calculate the matrix norm $||B||_2$.
- (c) Calculate the spectral radius $\rho(B)$ of the matrix B.
- (d) Compute the geometric series

$$\sum_{k=0}^{\infty} B^k = I + B + B^2 + \cdots,$$
 (6)

if the series converges. Otherwise, explain why it does not converge.

- 5. Let S be the subspace spanned by $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (1, 2, 1)$.
 - (a) Find an orthonormal basis for S.
 - (b) Find the projection matrix $P \in \mathbb{R}^{3\times 3}$ that projects a vector in \mathbb{R}^3 onto the subspace S.
 - (c) Find the projection matrix $Q \in \mathbb{R}^{3\times 3}$ that projects a vector in \mathbb{R}^3 onto the orthogonal complement S^{\perp} of the subspace S.
- 6. Diagonalize the following matrix A using an orthogonal matrix P:

$$A = \begin{bmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{bmatrix}. \tag{7}$$

7. Compute the singular value decomposition of the following matrix A:

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}. \tag{8}$$

- 8. Let Null(A) be the null space of A (i.e. the solution space of $A\mathbf{x}=0$). For each of the following cases, find an example of $A \in \mathbb{R}^{4\times 4}$. Note: Write down a specific matrix for each case.
 - (a) $\dim(\text{Null}(A)) = 0$.
 - (b) $\dim(\text{Null}(A)) = 1$.
 - (c) $\dim(\text{Null}(A)) = 2$.
 - (d) $\dim(\text{Null}(A)) = 3$.
 - (e) $\dim(\text{Null}(A)) = 4$.
- 9. Determine whether each of the following statements is true or false. Justify your answers.
 - (a) There exist a pair of square matrices A and B such that AB = I but $BA \neq I$.
 - (b) For *n*-dimensional (column) vectors \mathbf{x} and \mathbf{y} , $\mathbf{x}^T\mathbf{y} = 0$ if and only if $\mathbf{x}\mathbf{y}^T = 0$.
 - (c) For a nonzero vector \mathbf{b} , the solution space of $A\mathbf{x} = \mathbf{b}$ is a vector space.
 - (d) The space of 3×3 symmetric matrices has dimension 3.
 - (e) If the 1-norm of a matrix B is greater than 1, the series $I + B + B^2 + \cdots$ diverges.