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Link with Ben’s talk

" > 0

" < 0

For ˛ ∈ R∗, there exists a
wavenumber k ∈ C such that

u(x; y) = w(y) ei˛x

is a surface plasmon.

" < 0

" > 0

For m ∈ Z∗, there exists a
wavenumber k ∈ C such that

u(r; „) = w(r) eim„

is a surface plasmon.
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The spectral problem

Permittivity ", piecewise constant,
discontinuous across CR
I " ≡ "c < 0 in the cavity DR;
I " ≡ 1 in R2 \DR.

DR (disk) and CR (circle) of
radius R.

R

"c < 0 " ≡ 1

Resonances problem: Find (‘2; u) ∈ C× H1
loc

`
R2
´
, u 6≡ 0, such that8><>:

−div("−1∇u) = ‘2 u in DR and R2 \DR
[u]CR = 0 and

ˆ
"−1 @nu

˜
CR

= 0 across CR

u is ‘-outgoing
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−div("−1∇u) = ‘2 u in DR and R2 \DR
[u]CR = 0 and

ˆ
"−1 @nu

˜
CR

= 0 across CR

u is ‘-outgoing

u is ‘-outgoing means that for r > R and „ ∈ R=2ıZ

u(r; „) =
X
m∈Z

“
am H

(1)
m (‘r) + bm|{z}

=0

H
(2)
m (‘r)

”
eim„:
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R2
´
, u 6≡ 0, such that8><>:

−div("−1∇u) = ‘2 u in DR and R2 \DR
[u]CR = 0 and

ˆ
"−1 @nu

˜
CR

= 0 across CR

u is ‘-outgoing

• The operator −div("−1∇) is self-adjoint if, and only if, "c 6= −1
[Costabel & Stephan, 1985].
• It is not semibounded, spdis ⊂ R∗− unbounded and spess = R+

[Carvalho & Moitier, in preparation].
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Almost-explicit computation for circular cavities

I Fourier series expansion in the periodic angular variable „:

u(r; „) =
X
m∈Z

wm(r) e
im„:

I ‘2 ∈ C is a solution of the spectral problem if, and only if, there
exists m ∈ Z such that

I
′
m(” ‘R) H

(1)
m (‘R) + ” Im(” ‘R)H

(1)
m

′
(‘R) = 0

where ” =
√
−"c > 0.

I The associated resonant mode

u‘(r; „) = eim„

8<:Im(” ‘ r) if r ≤ R
Im(” ‘R)

H
(1)
m (‘ R)

H
(1)
m (‘ r) if r > R

:
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Resonances for a circular cavity
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For R = 1 and ” =
√
−"c, graphs in (Re(‘2); Im(‘2)) of the roots of

‘ 7→ I
′
m(” ‘R) H

(1)
m (‘R) + ” Im(” ‘R)H

(1)
m

′
(‘R).

This set can be partitioned R[”] = Rout[”] ∪Rinn[”] ∪Rpla[”].
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Outer resonances for a circular cavity
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"c = −0:8 "c = −1:2

The outer resonances “live” outside of the cavity.
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Inner resonances for a circular cavity
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"c = −0:8 "c = −1:2

The inner resonances are negative eigenvalues (‘2 < 0) of −div("−1∇) on
L2(R2) and “live” inside the cavity.
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Plasmonic resonances for a circular cavity
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"c = −0:8 "c = −1:2

The plasmonic resonances “live” on the interface and
I for −1 < "c < 0, are negative eigenvalues (‘2 < 0);
I for "c < −1, are resonances (Re(‘2) > 0 and −1� Im(‘2) < 0).
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Scaling of the plasmon as m→ +∞

"c < 0

" ≡ 1
" ≡ 1

"c < 0

R

0

„

2ı

r

Cartesian coordinates: (x; y) ∈ R2

8><>:
−div

`
"−1∇u

´
= ‘2u

[u]CR = 0ˆ
"−1 @nu

˜
CR

= 0

" ≡ 1

"c < 0

0

−∞

„

2ı

ff = m( rR − 1)+∞
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Scaling of the plasmon as m→ +∞

"c < 0

" ≡ 1
" ≡ 1

"c < 0

R

0

„

2ı

r

Polar coordinates: (r; „) ∈ R+ × R=2ıZ8>><>>:
−1
r @r
`
"−1 r@ru

´
− "−1

r2
@2„u = ‘2u

[u]{R}×R=2ıZ = 0ˆ
"−1 @ru

˜
{R}×R=2ıZ = 0

" ≡ 1

"c < 0

0

−∞

„

2ı

ff = m( rR − 1)+∞
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r

Polar coordinates: (r; „) ∈ R+ × R=2ıZ

u(r; „) = w(r) eim„ with m ∈ Z∗8>><>>:
−1
r @r
`
"−1 r@rw

´
−m2 "−1

r2
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Scaling of the plasmon as m→ +∞

"c < 0

" ≡ 1
" ≡ 1

"c < 0
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2ı

r

Scale coordinates: (ff; „) ∈ R× R=2ıZ

’(ff) = w(r) and – =
`
R‘
m

´2
8>><>>:
−@ff

`
"−1 @ff’

´
− "−1’ = –’+O( 1

m )

[’]{0} = 0ˆ
"−1 @ff’

˜
{0} = 0

" ≡ 1
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0

−∞

„
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Asymptotic expansion of the plasmonic resonances

Theorem: For "c 6= −1, there exists a sequence (‘m)m≥1 of
complex such that
I (‘2m)m≥1 are negative eigenvalues for −1 < "c < 0,
I (‘2m)m≥1 are resonances for "c < −1,

and

‘2m =
m2

R2

`
1 + "−1c

´241 + N−1X
q=1

–qm
−q +O

“
m−N

”35 ; ∀N ≥ 1:

Remark: All the coefficients –q are real and, for "c < −1, we have
0 < 1 + "−1c < 1 so Im(‘2m) = O(m−N) for all N ∈ N.

Proof: It relies on the Black Box Scattering theory and the theorem of
[Tang & Zworski, 1998].
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The scattering problem

" ≡ "c < 0 " ≡ 1

uink

usck

Given:
I a wavenumber k > 0

I an incident field uink (x; y) = ei k y

Find: the scattered field usck ∈ H1
loc

`
R2
´

such that u = uink + usck and8>>>><>>>>:
−div("−1∇u)− k2 u = 0 in R2 \ CR
[u]CR = 0 across CRˆ
"−1 @nu

˜
CR

= 0 across CR

usck is k-outgoing

• usck is k-outgoing ⇔ Sommerfeld radiation condition.
• The problem is well posed for "c 6= −1 (T-coercivity arguments).
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Almost-explicit computation for circular cavities

The incident field with the Jacobi-Anger expansion:

uink (x; y) = ei k y = ei k r sin(„) =
X
m∈Z

Jm(k r) e
im„:

The scattered field:

usck (x; y) =
X
m∈Z

eim„

(
am Im(k r)− Jm(k r) if r ≤ R

bm H
(1)
m (k r) if r > R

where, with ” =
√
−"c, the coefficients (am; bm) solve0@ Im(”kR) −H

(1)
m (kR)

”−1 I′m(”kR) H
(1)
m

′
(kR)

1A am
bm

!
=

 
Jm(kR)

− J′m(kR)

!
:
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Graphs of the incident fields

For R = 1 and "c = −1:2, the graphs of uink (x; y) = eiky .

|uink |

arg(uink )

k0 − 0:01 ≈ 6:47 k0 ≈ 6:48 k0 + 0:01 ≈ 6:49
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Graphs of the scattered fields

For R = 1 and "c = −1:2, the graphs of usck .

|usck |

arg(usck )

k0 − 0:01 ≈ 6:47 k0 ≈ 6:48 k0 + 0:01 ≈ 6:49
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Graphs of the responses

R = 1,  = 2, and graphs of N"; : k 7→
‖usck ‖L2‚‚uink ‚‚L2 where L2 = L2(D(0; ))
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N
,

c = 1.1
c = 1.2
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"c ∈ {−0:9;−0:8;−0:7} "c ∈ {−1:1;−1:2;−1:3}

The blue dashed lines correspond to Re(‘m) of the plasmonic resonances for
"c = −1:1.
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Final remarks

Remark:
I Everything in this talk is valid for other shape of cavity and/or

variable permittivity.

Conclusions:
I We can excite surface plasmons via scattering only if "c < −1

because they correspond to resonances close to R+.
I But this is bad news for FEM and BEM because those surface

plasmons constrained the meshes with their high number of
oscillations and localization along the interface of the cavity.
Can we extract them?

Thank you for your attention
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