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Introduction: 2D close evaluation problem

Au+k*u=0 inR?\ D,
u=f on dD,

Oru — iku = o(r~1/?), r— o0,

Goal: accurately evaluate the near field, that is the solution
of the scattering problem near the boundary.

Why ? Problems in Stokes flow and plasmonic problems require accurate evaluation

near the boundary.

JFL Lab. Garoli et al., (2015)

How ? Using boundary integral methods.

Subtraction techniques for layer potentials, CARVALHO, 2020.
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How to address this error ?

1) increase the number of quadrature points

X bigger linear system to solve

2) use high-order Nystrom methods
X requires sophisticated accelerated schemes

3) other techniques that achieve accurate precision:
regularization, interpolation, QBX ...

g

I=) Beale etal. (2001), Helsing et al. (2008), Barnett (2014).

Can we provide a simple method without 1), 2) (or 3)) ?

Today’s idea: subtraction techniques

wa)= | Kay)uly)doy= | Ky)lly) - ale,y)do, + | Kz y)alz,y) do,
8D 8D I 8D I
Vanishes at x = y Spectral computation
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The solution of the interior Dirichlet Laplace problem can be represented as

u(x) = [ On,CG(z,y)u(y)doy

(i: fundamental solution G(z,y) = o log | — vy 9D
1.: solution of the BIE

1
—5Hy) + /w On, G y)(y) doy = f(y'), Vy' € 0D
0 xze€R?\D
Using Gauss’s law: On, G (x,y)doy = § —5 € ID
dD
-1 xe€D

w@)= [0, Cla)lily) —p@ldo, + [ 0, Claute) do,

_ /3 0, G () = p(a)) do, — )

T

Vanishes atz =y  Depends only on / resolution
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Test using Periodic Trapezoid Rule (PTR) with N = 128 for u(z) = log |z — x|

Method 1: PTR Method 2: PTR + density subtraction
u(x) = | On,G(z,y)u(y) doy, u(x) = / On, C(z, ) [11(y) — p(z)] doy — p(x)
oD 8D
10° ; 10°
i —Method 1| : — Method 1 |-

< —Method 2 _ m - —Method 2|
i= i=
3 3 107°
5 © -
5 107 5
o ) ,
% % 10-10}
(@] o) i
) _ )
< <

10710 |

10-15 ; Pz X A
1073 1073 1072 107
)
1 — 1 — ————————
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Can we do the same trick for scattering problems ?

0 zcR?\D
On, Gz, y)doy = —2 2€dD  with C(z,y) = LH" (klz — y|)

oD —1 xze€ D

_09



Extensions to Helmholtz

Can we do the same trick for scattering problems ?

with C(z,y) == LHM (klz — y))




Extensions to Helmholtz

Can we do the same trick for scattering problems ?

x € 0D with G(x,y) := .Hél)(kh? —yl)

i
A

The key is work with solutions of Helmholtz: plane waves uq(z) = ¢




Extensions to Helmholtz

Can we do the same trick for scattering problems ?

x € 0D with G(x,y) := .Hél)(kh? —yl)

i
A

The key is work with solutions of Helmholtz: plane waves uq(z) = ¢

One can show that )
0 r € R?\ D
/ O, G, y) —ik(ny -d)C(x, y)]e Y do, = —2e*ld®) e 9D
o _etk(dz) e D
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u(z) = /a i On, G (2, y) — ikG(z, y)|1(y) doy )%“

Use the plane wave with incidence 7 : Uz (y) = etFney)

oD
u(z) = / On, G (@, y)—ik(ny - na) G (@, y)] 1 (y) dgy—i/ k—F(ny - ng)|G (2, y)1(y) doy
oD oD T«

Plane Wave subtraction Vanishes at = y

v
/ On, G (@, y) — tk(ny - ny) G (2, y)] {M(y) - M(fl?)emw'(y_m)} doy <« Vanishes at = = Yy
oD

Y ) 9

Using new identit
. & y

u(@) = [ [0n,Cloy) = iklny -0 )Gl [1la) = pla)e™ 0] do,

i /a [k =k, - )G )



Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with N =256 for u(z) := %H((,l) (klxr — xg|) k=15
Method 1: PTR

Method 2: PTR + PW subtraction



Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with N =256 for u(z) := %H((,l) (k|lx — xo|) k=15
Method 1: PTR

error PTR
error PTR point A error PTR point B
0.1 ., 0 ,++'-0.8
0°-, Lot 0
v -2‘ * "
1-2 ’ -0.85 -2
0.05
-4 -4 -4
-0.9
- -6 -
0 | 6 6
-8 -8 -0.95 -8
-0.05 -10 10 § -10
-12 -12
-12
-0.1 ——— Wy -1.05 : : -14
-0.9 -0.85 -0.8 -0.75 -0.7 -14 -1.15 11 1.05 -1 -0.95 -0.9

1 05 0 05 1 15
Method 2: PTR + PW subtraction

error PW subtraction

error PWS point A error PWS point B
0.1 .. 0 L.*'-0.8
0., Lt 0
‘e ‘_2‘ .
1-2 -0.85 1-2
0.05
-4 -4 -4
5 -0.9
0 -6 - -6
-8 -8 -0.95 -8
-0.05 -10 10 P -10
-12 -12
-12
-0.1 -14 -1.05 : : -14
-0.9 -0.85 -0.8 -0.75 -0.7 14 115 -11 -1.05 -1 -0.95 -0.9
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Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with N =256 for u(z) := %H((,l) (klxr — xg|) k=15

10° 10°
< : o0
= , =
0 . 5 Q (a5
Q1077 Q 10
5| :
® ' o
21010 51077
O I O
wn | wn
S . <

-15- -15

10 10
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Subtraction technique for Helmholtz

Test using Periodic Trapezoid Rule (PTR) with N = 128 for u(z) := *H\" (k|z — zo|) k=5

error PTR error PW subtraction

absolute error at point A
absolute error at point B
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Summary

Due to sharply peaked behavior of layer potentials” kernel, one makes an O(1) error for
close evaluation.

Subtraction techniques help reduce the error (for free)

2D Helmholtz and Laplace problems
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Other techniques:

Kernel / singularity subtraction techniques Perez-Arancibia (2018)

Carvalho, Khatri, Kim (2020)

Asymptotic approximations
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Summary

Due to sharply peaked behavior of layer potentials” kernel, one makes an O(1) error for
close evaluation.

Subtraction techniques help reduce the error (for free)

2D Helmholtz and Laplace problems

Other techniques:

Kernel / singularity subtraction techniques Perez-Arancibia (2018)

Carvalho, Khatri, Kim (2020)

Asymptotic approximations

Perspectives:

Stokes flow (3D)

Scattering problem in plasmonics (transmission problem)
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Thank you for your attention.

THIS 1S WHAT LEARNING LOGIC GATES FEELS LIKE

SEE, YOU JUST CONNECT THIS 12 INPUT REVERSE
FLIP-FLOP TO THE CONTROLLED TWO-THIRDS ADDER,
WHICH RESETS THE LATCHES IN THE NOT-NAND RELAY
ARRAY, THEN LOOP BACK TO ODD-NUMBER INPUTS
AND REVERSE ALL YOUR SWITCHES/

AND WHAT'S

2
THAT PO SUBTRACTION.

DAY

smbc.com
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