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Before We Talk about the FBIM...
(Stochastic Dynamics 101)

1. Langevin description of Brownian motion

2. Fluctuating hydrodynamics of a homogeneous fluid
** Basic building blocks for stochastic dynamics

» Gaussian white noise processes

» Spatio-temporal Gaussian white noise fields



Langevin Description of Brownian Motion

friction random force

X =V mv = —yv + ./ 2ykgTE(t)
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Gaussian white noise process £(t): (£(t)) =0 (E()é()) =6(t—t)

t
J ENdt ~N(u=0,0%=1t)
0

Hence, m[v(t + At) — v(t)] = —yv(t)At + /2y kgT N (0, At)



Fluctuation-Dissipation Balance

t
mv=—yv+A&(t) - v(t)=A j e—%(t—t') E(tHdt’

A = /2ykgT is chosen so that %m(vz) = %kBT.

*»* For each dissipative process, a fluctuating process needs to be incorporated so that the
correct equilibrium be established.
+** The friction and random forces originate from the interactions with the surrounding fluid.

Many Interacting Brownian Particles

mV; = fine — ViV; ++/2yikpT&;(t)

: : . ,2k
Brownian dynamics % = fint N BT £(t) = . Tfmt + /2D;&;(t)

(overdamped —» m;v; = 0) Vi

% Einstein relation: Dy = kgT



Fluctuating Hydrodynamics

momentum

av pressure advection dissipation

PoT +Vn = —pV - (vwh) + nV?v +/nkgTV-(Z + Z")

stochastic momentum flux

V-v=20
Gaussian white noise field  (Z;;(r, )Zy (', t")) = §,48;16(r —r)5(t — t')
t+AL
j dr’ j dt' Z;;(r',t)) ~ N(0,AVAt)
av Ut

In the k-space, you can find a similar structure to the Langevin equation:
(i.e. fluctuation-dissipation balance)

—(mk®)vy + (\2nkgTik)Z;
cf. —yv + /2ykgTé&(t)



Formulations

. Full (=inertial) description

. Overdamped limit

. Stokes boundary value problems

. First-kind integral formulation



Full Fluctuating Hydrodynamics Description

Particle ./Fﬁ
Op &
{ap. 65}, {up, wp} ‘
/ (Zij(r.t) Zu(r',1))
P + Vi =nVio+ 20k T V- 2 = Oudje+ dudju)o(r —7)o(t — 1)
t - B : \
V.v=0,

} incompressible Stokes equations

’U(:E, t) — us -+ wpg X (;1: — qg) Va € Fﬁ? no-slip boundary condition

traction vectors

As(x) = (0-15)(x)

du s S
il = 15— [ a4 AT (@) ds,. AD(@) = (o -my) (@)
g stress tensors
. _ . -
Is- % =T _f (. —x5) x (Ag —i—AE;))(:I?) S, o=—-1l+nVv+ V' v),
I'g

o) = \/2mkpT Z.



Overdamped Limit
Q,,B — {q,ﬁveﬁ} Q = {Qi} 2:1

% _ NF + 2y TAW + (ks T)(0g - N)

T
deterministic case

Body mobility matrix N = N(Q)

F(Q) ={f:(Q).7:(Q)}, , <= U={u;w;}}

Standard mobility problem
—V.0=Vr—nV?v =0,
V.v=0,

v(T) =us+ws x (x —qz), Vel

/ As(x) dSe = 5 and / (x —x.) X Ag(x) dSy = T5.
T JT'p



Comparison with Brownian Dynamics

. D;
X; = 7= fint +/2D;&(t)
kT
l//mean velocity /random velocity
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% _ NF + 2y TAW + (ks T)(0g - N)

—
NE(NE) =N
WOWT()) =1(t - t")

+* Random velocity is multiplicative noise.

» Third term is stochastic drift due to Ito interpretation.

< How to sample f:Mtw/ZkBTNl/ZWdt’ ~ UAL?

~ ~T QABT
» (UU ) = .
( ) Ar N,




Stochastic Stokes Boundary Value Problem

For simplicity, a single particle case is presented.
—V.0=Vr-—nVu=0 rc V\D.
V.v=0,

v(@) = u+wx (@—q) -[5@)] zel.

/)\(a:) dS, = f and /(.’E —q) X XNx)dS, =T
r r

(v(x)D(y)) = QIZB%TG(;E —vy), forall (x#y)el

G(r) = Green’s function for steady Stokes flow

~ o~ T
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Two BVPs

Stokes BVP without random surface velocity (standard mobility problem)

-V .-5=V7—nV7o=0, forU = NF

A force- and torque-free Stokes BVP with a random surface velocity

. =~ 1 t+At P
_V O = Vﬁ — ;]V‘)ff} = 0. forU =~ Eft A/ ZkBTNl/ZWdt

/i(m) dS, =0 and /(m —q) X A(x)dS, = 0.
r r



First-kind Integral Formulation

It is possible to extend the fluid to the entire domain.

vieel)=ut+wx(x—q)—vx) = /PG(a:—y)w(y)dSy;

[v@as.—s  [@-a)xv@as, -7

These equations define a (saddle-point) linear system to be solved for the
single-layer density ¥ (x € I') and particle velocity U = {u, w}

U QkBT
(M) (zel) = /(G(a: —y)p(y)dS, (0v) = — M.
r oo
Compact, self-adjoint, and positive-semidefinite operator D i Z \/)TEUE w,. Karhunen-Loeve
in the L? sense — ' expansion
2kgT
of. (v(x)d(y)) = Ai Gz —y), forall (x#£y)el

The most direct way to regularize the singular Green’s function is to represent it in Fourier space
and then simply truncate the finite-dimensional sum to a finite number of Fourier modes.




Numerical Method

First-kind formulation - a discrete saddle-point linear system

Its solution strictly obeys discrete fluctuation-dissipation balance

without any approximation

GMRes

Inherent ill-conditioning

» Preconditioning for the iterative solver

+ Computational cost of FBIM scales linearly with the number of particles.
¢ The Brown displacements of the particles are computed along the way

with only a marginal increases in the overall cost.



Summary

Overdamped Brownian dynamics

% — NF +\2kgTN*W + (kgT)(0g - N)

% NF and /2kzTNY2W can be calculated from deterministic and stochastic

Stokes BVPs, respectively.
s The first-kind formulation provides a suitable starting point for a finite-
dimensional discretization of the random surface velocity (= discrete

fluctuation-dissipation balance).



