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Agenda

 Motivation

 Data driven problems

 Obstacle identification and deep-learning

 Dealing with CFL instability using deep-learning
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Underwater acoustics

 Sonar imaging
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The wave problem
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ሷ𝑢 Ԧ𝑥, 𝑡 = 𝑑𝑖𝑣 𝑐 Ԧ𝑥 2𝛻𝑢 Ԧ𝑥, 𝑡 , Ԧ𝑥 ∈ Ω, t ∈ (0, 𝑇]

𝑢 Ԧ𝑥, 0 = 𝑢0 Ԧ𝑥 , Ԧ𝑥 ∈ Ω

ሶ𝑢 Ԧ𝑥, 0 = ሶ𝑢0 Ԧ𝑥 , Ԧ𝑥 ∈ Ω

𝑢 Ԧ𝑥, 𝑡 = 𝑓 Ԧ𝑥, 𝑡 , Ԧ𝑥 ∈ 𝜕Ω1, t ∈ 0, 𝑇

𝛻𝑢 Ԧ𝑥, 𝑡 = 𝑔 Ԧ𝑥, 𝑡 , Ԧ𝑥 ∈ 𝜕Ω2, t ∈ [0, 𝑇]

𝜕Ω1 ∪ 𝜕Ω2 = 𝜕Ω

where    ሶ𝑢0 Ԧ𝑥 = 0 and 𝑓 Ԧ𝑥, 𝑡 = 𝑔 Ԧ𝑥, 𝑡 = 0



Ill-posed problems

 In an experiment, we store the pressure at a small 

number of sensors for all time steps

 We wish to find the properties of the source or 

obstacle from the data stored at these sensors 

where the number of sensors << mesh

 This is an inverse problem which is highly ill-posed

 Hence, one cannot usually reconstruct the initial 

conditions perfectly

 Can we solve these types of ill-posed problems 

with learning?
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Partial information
 “Recording” the solution at a small set of 

sensors placed in the domain Ԧ𝑥s𝑛 𝑛=1

𝐾
∈ Ω

 Data –

𝑢 Ԧ𝑥s1 , t

𝑢 Ԧ𝑥s2 , t

⋮
𝑢 Ԧ𝑥sn , t

+ 𝒩 𝜇, 𝜎2

 The ill-posedness raises sensitivity to noise at 

the sensors
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Data driven problems

 Supervised learning

 Input data

 Output labels

 Training

 Prediction (testing)

 Drawback - sensitivity
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Deep-learning

 Training “weights” to learn connections in the data

 Hidden multi-dimensional embeddings

 Convolutions, Fully connected

 “Deep” and non-linear

 Loss
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Physically-informed NN

 Input: set of points from the initial and boundary 

conditions

 Output: solution in the domain

 Loss: the problem
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M. Raissi, P. Perdikaris, G.E. Karniadakis, Journal of computational Physics, 2018



Results
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Problem definition
Given the position of the source/s and data at a few 

sensors but many time slices find the location, size and 

shape of the unknown scatterers

Input: Sensors recordings (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑁𝑡𝑠𝑡𝑒𝑝𝑠 × 𝑁𝑠𝑒𝑛𝑠𝑜𝑟𝑠)

Output: Obstacle?
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Prior work

 Location Ԧ𝑥

 Shape and size –

 Circles: Radius

 Rectangles: Height and Width

 Complex shapes: need to be parametrized

 “Soft” obstacles –

 Semi-penetrable

 Multiphysics
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Labels solution - segments
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Labels are 𝑚 × 𝑛
binary matrices

Predictions will be 

𝑚 × 𝑛 probability 

matrices

Loss: NLL



Spatio-temporal architecture
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Loss diagram
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Probability 

map



Physically informed loss

 Using the segmentation network and output ෨𝑂

 Define a loss component based on:

 Solve: 𝑢𝑡𝑡 = 1 − ෨𝑂 𝑥 𝑐2(𝑥) Δ𝑢

 Get sensor data: ෤𝑢𝑘 𝑥𝑠𝑖 𝑖=1

#𝑠𝑒𝑛𝑠𝑜𝑟𝑠
for each sample

 Calculate MSE between ground truth 

𝑢𝑘 𝑥𝑠𝑖 𝑖=1

#𝑠𝑒𝑛𝑠𝑜𝑟𝑠
and the prediction as component 𝑙2

 Define the loss function for our network as:

𝛼 ⋅ 𝑙1 + 1 − 𝛼 ⋅ 𝑙2
such that 𝑙1 is the NLL loss described earlier
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Numerical experiments
 Dirichlet BC

 Compact Gaussian initial condition

 Arbitrary polygonal obstacles –

 Generate number of edges

 Generate edge length and angle

 Generate location (𝑥0, 𝑦0, 𝑧0)

❖ Enormous samples space

 Generated only 25,000 samples
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Probability images
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Neural network – results
 Intersection over union: 0 ≤ 𝐼𝑂𝑈 𝐴, 𝐵 =

𝐴∩𝐵

𝐴∪𝐵
≤ 1

 Up to  66% IOU  score
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A.K., E. Turkel, D. Givoli, S. Dekel, Journal of computational Physics, 2020
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Explicit schemes and CFL
 One-dimensional wave equation

 CFL condition for stability: 𝛼 =
𝑐Δ𝑡

Δ𝑥
≤ 1

 FDCD: 𝑢𝑖
𝑛+1 = 2𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−1 + 𝛼2 𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛
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Network architecture

 Input: 𝑢 𝑛−1 𝑚, 𝑢𝑛𝑚

 Output: 𝑢 𝑛+1 𝑚

 Spatio-temporal architecture

 Non-linear activation (PReLU)

 Loss: MSE between 𝑢 𝑛+1 𝑚 and ො𝑢 𝑛+1 𝑚
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Network diagram
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Physics informed loss

 Use 𝑢 𝑛−1 𝑚, 𝑢𝑛𝑚 to predict ො𝑢 𝑛+1 𝑚

 Inside the loss:

 Use 𝑢 𝑛+1 𝑚, 𝑢 𝑛+1 𝑚+1 to calculate 𝑢 𝑛+1 𝑚+𝑗

 Use ො𝑢 𝑛+1 𝑚, 𝑢 𝑛+1 𝑚+1 to predict ො𝑢 𝑛+1 𝑚+𝑗

 Calculate the MSE between 𝑢 𝑛+1 𝑚+𝑗 and ො𝑢 𝑛+1 𝑚+𝑗

 Network loss is the linear combination of the two 

MSE losses
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Numerical experiments
 Dirichlet BC

 Data:

 Linear combinations with random coefficients 

created from the basis sin 𝜋𝑘𝑥 𝑘=1
20

 1250 different initial condition and 397 time-steps for 

each one, total of 496,250 samples

 Samples created with CFL = 0.875 and only each 

10th sample was taken to get CFL = 8.75
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Results
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Results
29

O. Ovadia, A. K, E. Turkel, S. Dekel, Journal of computational physics, submitted



Summary and future work

 Obstacle location and identification

 Investigating source location

 High measurement noise

 Stability

 Extending to 2,3 dimensions

 Dispersion relation problem – optimized kernels

 Experimental data
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Thanks!
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