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The wave problem

(ii(X, t) = div(c(X)?Vu(%, ), x €Q,te (0,T]
u(x,0) = uy(x), X €
9 u(%,0) = uy(x¥), xe€q 90, U0Q, = o0
u(x, t) = f(x,t), X €0Q,,t€[0,T]
\ Vu(x,t) = g(x,t), X € 0Q,,t € [0,T]

where 1y(¥) =0and f(x,t) = g(x,t) =0



T

ll-posed problems

o In an experiment, we store the pressure at a small
number of sensors for all time steps

o We wish to find the properties of the source or
obstacle from the data stored at these sensors
where the number of sensors << mesh

o This is an inverse problem which is highly ill-posed

o Hence, one cannot usually reconstruct the inifial
conditions perfectly

o Can we solve these types of illl-posed problems
with learninge




Partfial information

o “Recording” the solution at a small set of
sensors placed in the domain {z; } L EQ

n=

o Data -
u(ic’sl,t)

u(fsz't)
: + N (u,0°)

u(fsn’ t)

o The ill-posedness raises sensitivity to noise aft
the sensors
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Datfa driven problems g "

o Supervised learning & \
o lc?S.f;j I;bels R /'\
o Troln!ng | ’ o @

o Prediction (testing)

o Drawback - sensitivity



Deep-learning

o Training “weights” to learn connections in the data
o Hidden multi-dimensional embeddings

o Convolutions, Fully connected

o “Deep’” and non-linear
o LOsS
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Physically-informed NN

o Input: set of points from the initial and boundary

conditions

o Output: solution in the domain

o Loss: the problem

iht + 0.5he + |h?h =0, xe[-5,5], tel0,7/2],
h(0, x) = 2 sech(x),

h(t, —5) = h(t, 5),

hy(t, —5) = hx(t, 5),

f:=iht + 0.5hx + |h|%h,

MSE =MSEq+ MSEp +MSE¥,

No
1 . )
MSEg = N Z |h(0, xh) — hi|2,
i=1

Np

MSEp = Nib > (|h*'(r§,, =5) — hi(ty, 5)* + |hi(t), =5) — hi(t}, 5)%) ,

i=1

Ny
1 .
MSE;=N—f§ |f(r},x})|2.
i=1

S—

M. Raissi, P. Perdikaris, G.E. Karniadakis, Journal of computational Physics, 2018




Results
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Problem definition

Given the position of the source/s and data at a few
sensors but many time slices find the location, size and
shape of the unknown scatterers

0 0.5 1 1.6 2 2.5 3

Input: Sensors recordings (Nsamples X Nisteps X Neensors)
Output: Obstacle?¢




Prior work

o Location x
o Shape and size —

o Circles: Radius

o Rectangles: Height and Width

o Complex shapes: need to be parametrized
o “Soft” obstacles —
o Semi-penetrable
o Multiphysics



Labels solution - segments

Labels are m xn
binary matrices

Predictions will be
m X n probability
matrices

Loss: NLL
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Spatio-temporal architecture
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Loss diagram

Wave
equation
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architecture 'éoutp Ut

Probability
map




Physically informed loss

o Using the segmentation network and output 0
o Define a loss component based on:

o Solve: uy = ((1 — (7(x)) Cz(x)) Au

)}#sensors
i=1

o Get sensor data: {i, (x5, for each sample

o Calculate MSE between ground truth
{uk(x_si’)}f:nsors and the prediction as component L,

o Define the loss function for our network as:
a-lL;+(1—a)- L,
such that 1, is the NLL loss described earlier




Numerical experiments

o Dirichlet BC
o Compact Gaussian initial condition
o Arbitrary polygonal obstacles —

o Generate number of edges

o Generate edge length and angle

o Generate location (xg, yo, Zo)

<« Enormous samples space

o Generated only 25,000 samples



Probbabillity images
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Neural network — results

o Intersection over union: 0 < IOU(A,B) = :jgg: <1
o Up 10 166% IOU| score
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A K., E. Turkel, D. Givoli, S. Dekel, Journal of computational Physics, 2020
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Explicit schemes and CFL

o One-dimensional wave equation

o CFL condition for stabllity: a = Lt <1

Ax
o FDCD: ut = 2ul —ul ™t + a?(ult; — 2ul + ul* ;)
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Network architecture

o Input; um-Dm ynm
o Output; ym+1m

o Spatio-temporal architecture

o Non-linear activation (PRelLU)

o Loss: MSE between u(+m gnd gn+m



Network diagram

Neural network
architecture




Physics informed loss

o Use u=Dm ynm 15 predict g(n+m
o Inside the loss:

o Use utm 3 (n+m+1 to cqolculate uttHm+i

o Use an+tm 3 (n+1m+1 o predict gn+1m+s

o Calculate the MSE between u™*Dm+j gng g+m+J

o Network loss is the linear combination of the two
MSE losses



Numerical experiments

o Dirichlet BC

o Daita:;

o Linear combinations with random coefficients
created from the basis {sin(wkx)}22,

o 1250 different initial condition and 397 time-steps for
each one, total of 496,250 samples

o Samples created with CFL = 0.875 and only each
10t sample was taken to get CFL = 8.75




Results

ws FDCD
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Error over time

Results

e Explicit FD
—-~ Mode! trained without physically infoermed component
—— Model trained with physically informed component
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Summary and future work

o Obstacle location and identification
o Investigating source location
o High measurement noise

o Stability
o Extending to 2,3 dimensions

o Dispersion relation problem — optimized kernels
o Experimental data






