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The limiting amplitude principle

Example: consider the wave equation
8ttu — CQA’UJ =0

Assuming we can write u = ue”*’* then the problem boils down to

Au+k2u=0 with k=2

c
When can we make this assumption ?

There is a boundary/source term that behaves like f = fe ™"

then after a long time (or asymptotically) the solution admits the same behavior.

Why considering the time-harmonic problem ?
Only spatial dependence
Lots of efficient methods available to solve problems in frequency domains

Is the limiting amplitude principle valid for all problems ?
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Scattering in plasmonic structures (1'D)

The goal is to compute the scattered field by a polygonal metallic obstacle.
Consider the Transverse Magnetic polarization: (E;, By, H,) = (E.,H,)

Maxwell equations reduce to:
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Scattering in plasmonic structures (1'D)

The goal is to compute the scattered field by a polygonal metallic obstacle.
Consider the Transverse Magnetic polarization: (E;, By, H,) = (E.,H,)

Maxwell equations reduce to:
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This problem is well-posed (truncate domain with Silver-Miiller condition)

>
=
X

TTeRAE
—_—

I==| Nicaise (2018)

| —




Scattering in plasmonic structures (D)

Consider the Transverse Magnetic polarization: (Eg, By, H,) = (E 1, H,)

Assume we can write: (EL,HZ, Jl) = (Epi,ll)e_m

Maxwell equations reduce to:

@ Metal —iwpoH, = -V x E | in R?
€ oo [ "
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Scattering in plasmonic structures (D)

Consider the Transverse Magnetic polarization: (Eg, By, H,) = (E 1, H,)

Assume we can write: (EL,HZ, Jl) = (Epﬂall)e_m

Maxwell equations reduce to:

)

Metal —iwpoH, = =V x E | in R?

Em (W) —Z'W€05(CU)EL =V x H, in R?

K % < [gcilelectric

Problem with sign-changing coefficients.
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Scattering in plasmonic structures (D)

Consider the Transverse Magnetic polarization in time-harmonic regime:
(E—:J_a H2‘7 jJ_) — (EJ_) ia jj_)e_iwt

Maxwell equations reduce to:

)

Metal | . (c(w)"'VH.) + k*H, = 0 in R?

Em (W) —iweoe(w)EL — V X H, n R?
Ed RQ \ Q
c(w) = w?
oo — —g ()
W

Non lossy Drude model:
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Well-posedness i frequency domain

Find H, € H'(Dg) such that HY(Dpg) := {u ul? + |Vul? dx < 400}

D
VH +k2 . =0in Dp .

—ikH, = 0,u™° — iku™ on Dpg

Thanks to the T-coercivity theory, one can prove well-posedness
under some conditions on £ and the geometry.

Idea: build ad hoc isomorphisms to compensate the change of sign.
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In our case: YES if and Only if ke 1= - ¢ I. I.is called critical interval.
If the interface is smooth: If the interface has corners:
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Well-posedness i frequency domain

The critical interval is related to critical frequencies: 7 {¢—27T, ¢ }
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Well-posedness i frequency domain

Outside /.. The scattering problem has a unique solution H, € H'(Dg)

Finite Elements converge o
1 . . / \%\,\I/sg A% M
| (under some condition on the mesh): e
design symmetric meshes near the interface = =
.. toensure optimal FE convergence

Insidel, \ {—1} The scattering problem is ill-posed in H'(Dg)

No FEM convergence
Appearance of oscillating

—

black-hole wave
hypersingularities at the corners
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The limiting amplitude principle

Time domain . Frequency domain
0H., = 2 ‘ —1 2 - 2
Ho =, =-VxFE, inR © V.(e(w)""VH,)+k"H,=0in R
7 _ _ : —iwsos(w)E —V x H, in R?
5068EL=V><HZ—JJ_ inR2 . * o
ot
% = wpeoﬁ 1 in Q
J. =0in R?\ Q
+ Well-posed problem . X Problem may be ill-posed
Bounded EM energy : “Infinite” EM energy

This indicates that the limiting amplitude principle should not hold for all frequencies

Can we find underlying signatures of this break from the time domain simulations?
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The limiting amplitude principle

The specific case of planar interface has been investigated theoretically and numerically.

t=33.74s t=233.74s

IC — {_1} /{’8 # _1 K;g — _1

I=) Cassier (2014), Vinoles (2016) Courtesy of V. Vinoles

In presence of corners, the theory is not clear.
We propose some numerical investigations to find signature of the critical interval.

[imiiog sopido el pmemanien CORALRO. 220, s
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Setting and quantities of interests

$_ == Scattering by two non lossy Drude materials in vacuum
$ :V Model 1: w, = 13.87 x 10*°rad/s e, =1

| N > W
Wsp
Model 2: w, = 13.87 x 10'°rad/s e, = 3.73
—l > W
Wsp

We consider two incident fields:
-one plane wave (monochromatic)
-a Gaussian pulse (polychromatic)

Time-domain simulations (DGTD) }

EM Energy (evolution over time, average, FFT, etc.)
1 -, 1

£(t) = SIIVEEEL (LI + 5 IV H ()12 +

Cross sections

C=— 2 I-dS 11 1/TH(t)dt
|Einc‘ S_ __T 0

FFT field at probe points
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Energy &(1)

$ We consider Model 1 for a monochromatic source.

% 10-13 Energy of time for several incident pulsations
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Change of behavior at critical frequencies, but difficult to quantify.



Energy &

We identify a change of behavior at critical frequencies.

Mean Energy for Drude material

le-13

Mean Energy
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winrad.s™?!

Can we provide a better signature ?
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T fields at probe points

FFT Hz for an incident pulse

FFT Hz for an incident pulse FFT Hz for an incident pulse
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If the limiting amplitude principle holds, the field should have the same Fourier
signature as the incident field.



T fields at probe points

This phenomenon happens for any type of incident pulse.
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(ross-sections

—— Non lossy

Scattering Cross section
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Black-hole resonances appear at critical frequencies.
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When dissipation comes into play

Metals are lossy. Adding dissipation into the problem makes the FD problem is well-posed.

Can we still find signature of this critical interval with dissipation ?

The underlying resonances can be explained via the limit problem !
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Summary

It is important de (re)connect time-domain and frequency-domain problems.

In non lossy AND lossy materials, unusual phenomena arise in frequency domain, and
the premises can be found in time-dependent simulations.

The limiting amplitude principle allows to validates (or not) considered models.

In lossy materials, underlying resonances can be explained by the limit (non lossy)
problem.

Perspectives:

Consider more relevant models for the metal’s permittivity.
(Drude-Lorentz model or hydrodynamic Drude’s model)

N7

T
SreR)

21




Thank you for your attention.
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